Wound healing in diabetic: a review of photobiomodulation therapy applications

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8310

Keywords:

Diabetes mellitus; Low-level light therapy; Lasers; Wounds and injuries; Wound healing.

Abstract

Objective: In order to identify the available scientific production regarding photobiomodulation therapy in wound repair associated with diabetes mellitus. Methodology: This is an integrative review seeking primary studies conducted in the databases MEDLINE, LILACS, and SCOPUS, from 2015 to 2020. Results: It was analyzed 18 articles. The year that most published articles related to the theme was 2016 and 2018 with 28 % of articles each. Regarding the place of study 72 % of them were international and 28 % national. Regarding the analysis of the evidence levels of the articles, 94 % of the articles were in level 2 of evidence. As for the samples used in the studies, 50% of the studies used in vivo samples, 39 % clinical samples and 11 % ​​were in vitro. 83 % used laser, 11 % ​​used LED and 6 % used two (laser and LED). At about the power density used, it ranged from 1.08 mW / cm2 to 1920 mW/cm2. Energy density ranged from 0.2 J/cm2 to 6 J/cm2. The power ranged from 5 mW to 80000 mW. Application time ranged from 12 to 1066 seconds. The most commonly used wavelength was 660 nm. Conclusion: Studies rectify the efficacy of photobiomodulation therapy alone or in combination with other treatments, humans as well as animals or in vitro, in wound repair associated with diabetes mellitus.

References

Amini, A., Soleimani, H., Abdollhifar, M. A., Moradi, A., Ghoreishi, S. K., Chien, S., & Bayat, M. (2019). Stereological and gene expression examinations on the combined effects of photobiomodulation and curcumin on wound healing in type one diabetic rats. Journal of cellular biochemistry, 120(10), 17994-18004.

Asghari, M., Kanonisabet, A., Safakhah, M., Azimzadeh, Z., Mostafavinia, A., Taheri, S., Amini, A., Ghorishi, S. K., JalaliFiroozkohi, R., Bayat, S., & Bayat, M. (2017). The effect of combined photobiomodulation and metformin on open skin wound healing in a non-genetic model of type II diabetes. Journal of Photochemistry and Photobiology B: Biology, 169, 63-69.

Ayuk, S. M., Houreld, N. N., & Abrahamse, H. (2018). Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers in Medical Science, 33(5), 1085-1093.

Beckmann, K. H., Meyer-Hamme, G., & Schröder, S. (2014). Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey. Evidence-Based Complementary and Alternative Medicine, 2014.

Bonini-Domingos, C. R., & Valente, F. M. (2012). Low-level laser therapy of leg ulcer in sickle cell anemia. Revista brasileira de hematologia e hemoterapia, 34(1), 65-66.

Burns, P. B., Rohrich, R. J., & Chung, K. C. (2011). The levels of evidence and their role in evidence-based medicine. Plastic and reconstructive surgery, 128(1), 305.

Carvalho, A. F. M. D., Feitosa, M. C. P., Coelho, N. P. M. D. F., Rebêlo, V. C. N., Castro, J. G. D., Sousa, P. R. G. D., Feitosa, V. C., & Arisawa, E. A. L. S. (2016). Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers. Revista da Escola de Enfermagem da USP, 50(4), 628-634.

Chaves, M. E. D. A., Araújo, A. R. D., Piancastelli, A. C. C., & Pinotti, M. (2014). Effects of low-power light therapy on wound healing: LASER x LED. Anais brasileiros de dermatologia, 89(4), 616-623.

Colombo, F., Neto, A. D. A. P. V., Sousa, A. P. C. D., Marchionni, A. M. T., Pinheiro, A. L. B., & Reis, S. R. D. A. (2013). Effect of low-level laser therapy (660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Brazilian dental journal, 24(4), 308-312.

Dagogo-Jack, S. (Ed.). (2017). Diabetes mellitus in developing countries and underserved communities. Springer International Publishing.

Dayan, V., Yannarelli, G., Billia, F., Filomeno, P., Wang, X. H., Davies, J. E., & Keating, A. (2011). Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic research in cardiology, 106(6), 1299-1310.

de Alencar Fonseca Santos, J., Campelo, M. B. D., de Oliveira, R. A., Nicolau, R. A., Rezende, V. E. A., & Arisawa, E. Â. L. (2018). Effects of low-power light therapy on the tissue repair process of chronic wounds in diabetic feet. Photomedicine and laser surgery, 36(6), 298-304.

Eissa, M., & Salih, W. H. (2017). The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers in medical science, 32(6), 1261-1267.

Fahimipour, F., Houshmand, B., Alemi, P., Asnaashari, M., Tafti, M. A., Akhoundikharanagh, F., Farashah, S. E. N., Aminisharifabad, M., Korani, A. S., Mahdian, M., Tahiri, m., & Bastami, F. (2016). The effect of He–Ne and Ga–Al–As lasers on the healing of oral mucosa in diabetic mice. Journal of Photochemistry and Photobiology B: Biology, 159, 149-154.

Feitosa, M. C. P., Carvalho, A. F. M. D., Feitosa, V. C., Coelho, I. M., Oliveira, R. A. D., & Arisawa, E. Â. L. (2015). Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers. Acta cirurgica brasileira, 30(12), 852-857.

Frangez, I., Cankar, K., Frangez, H. B., & Smrke, D. M. (2017). The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients—a prospective, double-blind randomized study. Lasers in medical science, 32(4), 887-894.

Gomes, M. F., Goulart, M. D. G. V., Giannasi, L. C., Hiraoka, C. M., Melo, G. D. F. S., de Sousa, A. G. V., Nóbrega, C. J. P., Zangaro, R. A., & Salgado, M. A. C. (2017). Effects of the GaAlAs diode laser (780 nm) on the periodontal tissues during orthodontic tooth movement in diabetes rats: histomorphological and immunohistochemical analysis. Lasers in medical science, 32(7), 1479-1487.

Góralczyk, K., Szymańska, J., Szot, K., Fisz, J., & Rość, D. (2016). Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers in medical science, 31(5), 825-831.

Grishman, E. K., White, P. C., & Savani, R. C. (2012). Toll-like receptors, the NLRP3 inflammasome, and interleukin-1β in the development and progression of type 1 diabetes. Pediatric research, 71(6), 626-632.

Hosseini Zijoud, S. R. (2016). The Importance of “Letter to the Editor”. Journal Mil Med, 18(3), 228-229.

Houreld, N. N. (2014). Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. The Scientific World Journal, 2014.

Karu, T. (2010). Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP.

Katsuda, Y., Ohta, T., Miyajima, K., Kemmochi, Y., Sasase, T., Tong, B., Shinohara, M., & Yamada, T. (2014). Diabetic complications in obese type 2 diabetic rat models. Experimental Animals, 63(2), 121-132.

Lau, P., Bidin, N., Krishnan, G., AnaybBaleg, S. M., Sum, M. B. M., Bakhtiar, H., Nassir, Z., & Hamid, A. (2015). Photobiostimulation effect on diabetic wound at different power density of near infrared laser. Journal of Photochemistry and Photobiology B: Biology, 151, 201-207.

Mao, Z., Wu, J. H., Dong, T., & Wu, M. X. (2016). Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10. Scientific reports, 6(1), 1-8.

Mathur, R. K., Sahu, K., Saraf, S., Patheja, P., Khan, F., & Gupta, P. K. (2017). Low-level laser therapy as an adjunct to conventional therapy in the treatment of diabetic foot ulcers. Lasers in medical science, 32(2), 275-282.

Mendes, K. D. S., Silveira, R. C. D. C. P., & Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & contexto enfermagem, 17(4), 758-764.

Okonkwo, U. A., & DiPietro, L. A. (2017). Diabetes and wound angiogenesis. International journal of molecular sciences, 18(7), 1419.

Pouriran, R., Piryaei, A., Mostafavinia, A., Zandpazandi, S., Hendudari, F., Amini, A., & Bayat, M. (2016). The effect of combined pulsed wave low-level laser therapy and human bone marrow mesenchymal stem cell-conditioned medium on open skin wound healing in diabetic rats. Photomedicine and laser surgery, 34(8), 345-354.

Sakata, S., Mera, Y., Kuroki, Y., Nashida, R., Kakutani, M., & Ohta, T. (2014). Combination therapy of an intestine-specific inhibitor of microsomal triglyceride transfer protein and peroxisome proliferator-activated receptor γ agonist in diabetic rat. Journal of Diabetes Research, 2014.

Santos, C. M. D. C., Pimenta, C. A. D. M., & Nobre, M. R. C. (2007). The PICO strategy for the research question construction and evidence search. Revista latino-americana de enfermagem, 15(3), 508-511.

Soleimani, H., Amini, A., Taheri, S., Sajadi, E., Shafikhani, S., Schuger, L. A., Reddy, V. B., Ghoreishi, S. K., Pouriran, R., Chien, S., & Bayat, M. (2018). The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. Journal of Photochemistry and Photobiology B: Biology, 181, 23-30.

Sousa, R. G. D., & Batista, K. D. N. M. (2016). Laser therapy in wound healing associated with diabetes mellitus-Review. Anais Brasileiros de Dermatologia, 91(4), 489-493.

Stagg, J. (2007). Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue antigens, 69(1), 1-9.

Volarevic, V., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2011). Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem cells, 29(1), 5-10.

Wu, X., Alberico, S., Saidu, E., Rahman Khan, S., Zheng, S., Romero, R., Chae, H. S., Li, S., Mochizuki, A., & Anders, J. (2015). Organic light emitting diode improves diabetic cutaneous wound healing in rats. Wound Repair and Regeneration, 23(1), 104-114.

Zhang, R., Zhou, Z., Wu, W., Lin, C. C., Tsui, P. H., & Wu, S. (2018). An improved fuzzy connectedness method for automatic three-dimensional liver vessel segmentation in CT images. Journal of Healthcare Engineering, 2018.

Downloads

Published

17/09/2020

How to Cite

ALEXANDRIA, F. E. D. de .; SILVA, N. C. .; MAIA FILHO, A. L. M.; ASSIS, L.; TIM, C. R. Wound healing in diabetic: a review of photobiomodulation therapy applications. Research, Society and Development, [S. l.], v. 9, n. 10, p. e259108310, 2020. DOI: 10.33448/rsd-v9i10.8310. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8310. Acesso em: 26 apr. 2024.

Issue

Section

Health Sciences