Chemical composition and antibacterial activity of commercial copaiba (Copaifera spp.) oils against bacterial pathogens isolated from postoperative mammoplasty surgery

Authors

  • Raquel Costa Machado Laboratory of Preclinical Research of Natural Products, Postgraduate Program in Medicinal Plants and Phytotherapics in Basic Attention, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0002-1489-9024
  • Ana Karina Vargas Soares Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0001-6076-166X
  • Isabela Carvalho dos Santos Laboratory of Microbiology of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0002-7971-5126
  • Wanessa de Campos Bortolucci Laboratory of Chemistry of Natural Products, Postgraduate Program in Biotechnology Applied to the Agriculture, Paranaense University, Umuarama, PR, Brazil https://orcid.org/0000-0002-7233-8313
  • Luis Fernando Espinoza Luizar Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0003-4952-3286
  • Caio Franco de Araújo Almeida Campos Postgraduate Program in Clean Technologies, UniCesumar University, Maringá, PR, Brazil. https://orcid.org/0000-0001-5689-4785
  • José Eduardo Gonçalves Postgraduate Program in Clean Technologies, Clean Technologies and Cesumar Institute of Science, Technologies and Innovation – ICETI, UniCesumar University, Maringá, PR, Brazil. https://orcid.org/0000-0002-2505-0536
  • Lidiane Nunes Barbosa Laboratory of Microbiology of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0001-5762-8091
  • Samantha Wietzikoski Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0003-4611-6642
  • Lisiane de Almeida Martins Laboratory of Microbiology of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0003-0700-2634
  • Zilda Cristiani Gazim 3Laboratory of Chemistry of Natural Products, Postgraduate Program in Biotechnology Applied to the Agriculture, Paranaense University, Umuarama, PR, Brazil https://orcid.org/0000-0003-0392-5976
  • Francislaine Aparecida dos Reis Lívero Laboratory of Preclinical Research of Natural Products, Postgraduate Program in Medicinal Plants and Phytotherapics in Basic Attention, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, PR, Brazil. https://orcid.org/0000-0001-6533-0850
  • Evellyn Claudia Wietzikoski Lovato Universidade Paranaense https://orcid.org/0000-0002-8511-0086

DOI:

https://doi.org/10.33448/rsd-v9i10.8593

Keywords:

Microbial viability; Gram-negative bacteria; Gram-positive bacteria; Mammoplasty; Staphylococcus aureus.

Abstract

Plastic surgeries are considered clean or potentially contaminated procedures. The incidence of infection in reduction mammoplasty is 1.1 to 22% and the main etiological agents are bacteria found on the skin and mucous membranes such as Staphylococcus aureus. Due to the increase in bacterial resistance with the widespread use of antibiotics, identify natural compounds with antibacterial action on postoperative surgery wounds are fundamental. Thus, the objective of this research was the identification of compounds and assessment of the antibacterial action of Copaifera spp. (copaiba) oil against standard strains and bacterial pathogens isolated from postoperative mammoplasty surgery. For this, four commercial copaiba oils (1, 2, 3 and 4) were submitted to a gas chromatography/mass spectrometry analysis. The in-vitro antimicrobial activity and the minimum inhibitory concentration (MIC) of oils on standard strains and clinical samples, as well as the disk antibiotics sensitivity and the synergistic effect of the oils and antibiotics, were assessed. A total of 72 compounds were identified, accounting for ~99% of the volatile constituents in the oils. Sesquiterpenes comprised 67.24– 90.11% of the components, with β-caryophyllene being the most common. Oils 1 and 2 were the most active on the S. aureus strain, with MIC similarto Oil 3, while Oil 4presented no activity. The same pattern was observed in the clinical samples. In addition, Oil 2 presented synergism when associated with amoxicillin. The synergistic effects of Copaiba oils may represent a source of therapeutic compounds against bacterial infections in surgical wound.

References

Adams, R. P. (2012). Identification of essential oils components by gas chromatography/mass spectroscopy. 4.ed. AlluredBussiness Media, USA, pp. 804.

Arruda, C., Mejía, J. A. A., Ribeiro, V. P., Borges, C. A. G., Martins, C. H. G., & Veneziani, R. C. S. et al. (2009). Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus – a review. Biomed.Pharmacother. 109, 1–20.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal.6,71–79.

Barbosa, P. C. S., Medeiros, R. S., Sampaio, P. T. B., Vieira, G., Wiedemann, L. S. M., & Veiga-Junior, V. F. (2012). Influence of abiotic factors on the chemical composition of copaiba oil (Copaiferamultijuga Hayne): soil composition, seasonality and diameter at breast height. J. Braz. Chem. Soc.23, 10, 1823–1833.

Belletti, N., Ndagijimana, M., Sisto, C., Guerzoni, M. E., Lanciotti, R., & Gardini, F. (2004). Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae. J. Agric. Food Chem. 52, 6932–6938.

Cascon, V., & Gilbert, B. (2000). Characterization of the chemical composition of oleoresins of CopaiferaguianensisDesf., Copaiferaduckei Dwyer and Copaiferamultijuga Hayne. Phytochem.55, 773–778.

Chiavari-Frederico, M.O., Barbosa, L.N., dos Santos, I.C., da Silva, G.R., de Castro, A.F., Bortolucci, W.C., Barboza, L.N., Campos, C.F.A.A., Gonçalves, J.E., Menetrier, J.V., Jacomassi, E., Gazim, Z.C., Wietzikoski, S., Lívero, F.A.R., Wietzikoski Lovato, E.C. (2020) Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. Plos one. 5(1), e0227023. https://doi.org/10.1371/journal.pone.0227023

CLSI. (2018). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 4th ed. CLSI supplement VET08. Wayne, PA: Clinical and Laboratory Standards Institute. 1–170.

Coates, A. R. M., & Hu, Y. (2007). Novel approaches to developing new antibiotics for bacterial infections. Br. J.Pharmacol. 152, 1147–1154.

El-Kalamouni, C., Venskutonis, P. R., Zebib, B., Merah, O., Raynaud, C., & Talou, T. (2017). Antioxidant and antimicrobial activities of the essential oil of Achilleamillefolium L. grown in France. Medicines. 4, 1-10.

Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspect.Medicin. Chem. 6, 25–64.

Feldman, E. M., Kontoyiannis, D. P., Sharabi, S. E., Lee, E., Kaufman, Y., & Heller, L. (2010). Breast implant infections: is cefazolin enough? Plast.Reconstr. Surg.126, 779–785.

Franco, D., Cardoso, F. L. L., & Franco, T. (2006). Antibiotic use in plastic surgery. Rev. Soc. Bras. Cir.Plast.21, 112–115.

Fung, H. B., Kirschenbaum, H. L., & Ojofeitimi, B. O. (2001). Linezolid: an oxazolidinone antimicrobial agent. Clin.Ther. 23, 356–391.

Gazim, Z. C., Amorim, A. C. L., Hovell, A. M. C., Rezende, C. M., & Nascimento, I. A. et al. (2010). Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradeniariparia(Hochst.) codd in southern Brazil. Mol.15, 5509–5524.

Goren, A. C., Piozz, F., Akcicek, E., Kiliç, T., Çarikçi, S., & Mozioglu, E. et al. (2011). Essential oil composition of twenty-two Stachysspecies (mountain tea) and their biological activities. Phytochem.Lett. 4, 448–453.

Gravante, G., Caruso, R., Araco, A., & Cervelli, V. (2008). Infections after plastic procedures: incidences, etiologies, risk factors, and antibiotic prophylaxis. Aesth.Plast. Surg.232, 243–251.

Gutwein, L. G., Panigrahi, M., Schultz, G. S., & Mast, B. A. (2012). Microbial barriers. Clin.Plast. Surg. 39, 229–238.

Hashim, S. E., Sirat, H. M., & Yen, K. H. (2014). Chemical compositions and antimicrobial activity of the essential oils of Hornstedtiahavilandii (Zingiberaceae). Nat. Prod.Commun. 9, 119–120.

Jawetz, E., Melnick, J. L., Adelberg, E. A., Jawetz, Melnick & Adelberg's. (1991). Med. Microbiol. 19aed. Typopress, Beirut, Lebanon. 632.

Kaye, K. S., Anderson, D. J., Sloane, R., Chen, L. F., Choi, Y., & Link, K. et al. (2009). The impact of surgical site infection on older operative patients. J. Am.Geriatr. Soc. 57, 46–54.

Khan, U. D. (2010). Breast augmentation, antibiotic prophylaxis, and infection: comparative analysis of 1,628 primary augmentation mammoplasties assessing the role and efficacy of antibiotics prophylaxis duration. Aesth.Plast. Surg.34, 42–47.

Krumperman, & P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl.Environ. Microbiol.46, 165–170.

Leandro, L. M., Varas, F. S., Barbosa, P. C., Neves, J. K., Silva, J. A., & Veiga-Junior, V. F. (2012). Review: chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleo-resins. Mol.17, 3866–3889.

Matsuo, Y., Sakagami, H., & Mimaki, Y. (2014). A rare type of sesquiterpene and β-santalol derivatives from Santalum album and their cytotoxic activities. Chem. Pharm. Bull. 62, 1192–1199.

Monzote, L., Scull, R., Cos, P., & Setzer, W. N. (2017). Essential oil from Piper aduncum: chemical analysis, antimicrobial assessment, and literature review. Medicines 4, 49.

Nascimento, P. F. C., Nascimento, A. C., Rodrigues, C. S., Antoniolli, A. R., Santos, P. O., & Barbosa Junior, A. M. et al. (2007). Antimicrobial activity of the Essentials oils: a multifactor approach of the methods. Rev. Bras.Farmacogn. 17, 108–113.

Negi, P. S. (2012). Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 156, 7–17.

Njume, C., Afolayan, A. J., Green, E., & Ndip, R. N. (2011). Volatile compounds in the stem bark of Sclerocaryabirrea (Anacardiaceae) possess antimicrobial activity against drug-resistant strains of Helicobacter pylori. Int J.Antimicrob. Agents. 38, 319–324.

Okdakowska-Jedynak, U., Paczek, L., Krawczyk, M., Zieniewicz, K., Nyckowski, P., & Pawlak, J. et al. (2003). Resistance of gram-positive pathogens to antibiotic is a therapeutic challenge after liver transplantation: clinical experience in one center with linezolid. Transplant. Proc. 35, 2304–2306.

Payne, D. J., & Gwynn, M. N., Holmes, D. J., Pompliano, D. L. (2007). Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug.Discov. 6, 29–40.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., Shitsuka, R. (2018) Metodologia do trabalho científico. Santa Maria: UAB / NTE / UFSM.

Pieri, F. A., Silva, V. O., Souza, C. F., Costa, J. C. M., Santos, L. F., & Moreira, M. A. S. (2012). Antimicrobial profile screeningoftwooilsofCopaifera genus. Arq. Bras. Med. Vet.Zootec.64, 241–244.

Saepou, S., Pohmakotr, M., Reutrakul, V., Yoosook, C., Kasisit, J., & Napaswad, C. et al. (2010). Anti-HIV-1 diterpenoids from leaves and twigs of Polyalthiasclerophylla. Planta Med.76, 721–725.

Santos, A. O., Ueda-Nakamura, T., Dias Filho, B. P., Veiga Junior, V. F., Pinto, A. C., & Nakamura, C. V. (2008). Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem. Inst. Oswaldo Cruz. 103, 277–281.

Sebisubi, F. M., Odyek, O., Anokbonggo, W. W., Ogwal-Okeng, J., Carcache-Blanco, E. J., & Ma, C. et al. (2010). Antimalarial activity of Aspiliapruliseta, a medicinal plant from Uganda. Planta Med.76, 1870–1873.

Spear, S. L., & Seruya, M. (2010). Management of the infected or exposed breast prosthesis: a single surgeon’s 15-year experience with 69 patients. Plast.Reconstr. Surg.125, 1074–1084.

Teng, Y., Yang, Q., Yu, Z., Zhou, G., Sun, Q., & Jin, H. et al. (2010). In vitro antimicrobial activity of the leaf essential oil of Spiraeaalpina Pall. World J.Microbiol.Biotechnol. 26, 9–14.

Valgas, C., Souza, S. M., Smânia, E. F. A., & Smânia, A. J. (2007). Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380.

Veiga Junior, V. F., & Pinto, A. C. (2002). The Copaifera L. genus. Quím. Nova. 25, 273–286.

Walsh, C. (2003). Where will new antibiotics come from? Nat. Rev.Microbiol. 1, 65–70.

Wietzikoski Lovato, E.C., Gurgel Velasquez, P.A., dos Santos Oliveira, C., Baruffi, C., Anghinoni, T., Machado, R.C., Lívero, F.A.R., Sato, S.W., Martins, L.A. (2018). High frequency equipment promotes antibacterial effects dependent on intensity and exposure time. Clin Cosmet Investig Dermatol. 11, 131-135. https://doi.org/10.2147/CCID.S156282

Zetola, N., Francis, J. S., Nuermberger, E. L., & Bishai, W. R. (2005). Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet. Infect. Dis. 5, 275–286.

Downloads

Published

23/09/2020

How to Cite

MACHADO, R. C. .; SOARES, A. K. V. .; SANTOS, I. C. dos .; BORTOLUCCI, W. de C. .; LUIZAR, L. F. E. .; CAMPOS, C. F. de A. A. .; GONÇALVES, J. E. .; BARBOSA, L. N. .; WIETZIKOSKI, S.; MARTINS, L. de A. .; GAZIM, Z. C. .; LÍVERO, F. A. dos R. .; LOVATO, E. C. W. . Chemical composition and antibacterial activity of commercial copaiba (Copaifera spp.) oils against bacterial pathogens isolated from postoperative mammoplasty surgery. Research, Society and Development, [S. l.], v. 9, n. 10, p. e1869108593, 2020. DOI: 10.33448/rsd-v9i10.8593. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8593. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences