Aspidosperma excelsum and its pharmacological potential: in silico studies of pharmacokinetic prediction, toxicological and biological activity

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8635

Keywords:

Medicinal plants; Prediction; Malaria; Alkaloids.

Abstract

Based on ethnobotanical studies, the Aspidosperma excelsum was selected due to its highest claim of popular use for malaria and febrile diseases treatments. This species is rich in secondary metabolites as alkaloids and therefore, the aim of this study was to evaluate the pharmacokinetic, toxicological and biological activity of alkaloids isolated from Aspidosperma excelsum by in silico studies. All substances already isolated from this species were submitted to predictive studies of biological, toxicological and pharmacokinetic activities. Predictive studies of biological activities did not attribute the antimalarial activity to pure substances. However, other activities were found, such as: action on central nervous system and antineoplastic activity. In pharmacokinetic terms, many substances showed an inhibitory action on cytochrome P450 (CYP) and many adverse reactions, highlighting actions on the CNS. Also, several alkaloids, being nitrogenous substances, presented mutagenic or genotoxic activities. Thus, it is demonstrated the species potential for biological activities not yet studied, as well as the importance of investigating its pharmacokinetic and toxicological properties, justifying the accomplishment of the present study.

References

Ajay, A., Bermis, G. W., & Murkco, M. A. (1999). Designing libraries with CNS activity. J Med Chem., 42 (24), 4942-4951. doi:10.1021/jm990017w.

Ames, B. N., Mccann, J., & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the Salmonella/Mammalian-microsome mutagenicity test. Mutat. Res., 31 (6), 347-364. doi:10.1016/0165-1161(75)90046-1.

Andrade-Neto, V. F., Pohlit, A. M., Pinto, A. C., Silva, E. C., Nogueira, K. L., Melo, M. R. S., Henrique, M. C., Amorim, R. C. N., Silva, L. F., Costa, M. R. F., Nunomura, R. C. S., Nunomura, S. M., Alecrim, W. D., Alecrin, M. G., Chaves, F. C. M. & Vieira, P. P. R. (2007). In vitro inhibition of Plasmodium falciparum by substances isolated fromamazonian anmalarial plants. Mem. Inst. Oswaldo Cruz., 102 (3), 359-365. doi:10.1590/S0074-02762007000300016.

Arndt, R. R., Brown, S. H., Ling, N. C., Roller, P., Carl, D., Ferrhra, J. M., Gilbert, F. B., Mimnda, E. C., & Flore, S. E. (1967). Alkaloid studies-LVIII. The alkaloids of six aspidosperma species. Phytochemistry., 6, 1653-1658. doi:10.1016/S0031-9422(00)82898-8.

Bero, J., Fréderich, M., & Quetin-Leclercq, J. (2009). Antimalarial compounds Isolated from plants used in traditional medicine. J. Pharm. Pharmacol., 61, 1401-1433. doi: 10.1211/jpp/61.11.0001.

Brandão, M. G. L., Carvalho, L. H., & Krettli, A. U. (1992). Antimaláricos de uso popular na Amazônia. Ciênc. Hoje., 13(78), 9-11.

Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phototherapeutic agents). Braz. J. Med. Biol. Res., 33 (2), 179-189. doi:10.1590/S0100-879X2000000200004.

Cardoso, C. L., Silva, D. H. L, Yung, C. M., Castro-Gamboa, I., & Bolzani, V. S. (2008). Indole monoterpene alkaloids from Chimarrhis turbinata DC Prodr: a contribuition to the chemotaxonomic studies of the Rubiaceae family. Rev. Bras. Farmacogn., 18 (1), 26-28. doi:10.1590/S0102-695X2008000100007.

Chadfield, M. S., & Hinton, M. H. (2004). In vitro activity of nitrofuran derivatives on growth and morphology of Salmonella entérica serotype Enteritidis. J. App. Microbiol., 96, 1002–1012. doi:10.1111/j.1365-2672.2004.02225.x.

Chabner, B.A., Bertino, J., Cleary, J., Ortiz, T., Lane, A., Supko, J. G., & Ryan, D. (2012). Agentes citotóxicos. In: Brunton, LL, Chabner BA & Knollmann BC. As bases faramcológicas da Terapêutica de Goodman e Gilman (pp. 1677-1729). Porto Alegre, Brasil: AMGH.

Chemicalize. (2020). Calculate properties instantly, search chemical data, and draw molecules online. Retrieved july 6, 2020, from https://chemicalize.com/.

Chierrito, T. P. C., Aguiar, A. C. C., Andrade, I. M., Ceravolo, I. P., Gonçalves, R. A. C., Oliveira, A. J. B., & Krettli, A. U. (2014). Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malar. J., 13, 142. doi:10.1186/1475-2875-13-142.

Coelho, S. R. (1989). Levantamento de plantas medicinais em comunidades de Rio Novo do Sul, Iconha, Itapemirim e Cachoeiro de Itapemirim. I Encontro sobre plantas medicinais do Espírito Santo, 1. Rio Novo do Sul, Brasil, p. 13-27. Retrieved from https://biblioteca.incaper.es.gov.br/digital/bitstream/123456789/3507/1/plantasmedicinaisderionovodosul-rozeli.pdf.

Costa, C. R., Olivi, P., Botta, C. M. R., & Espindola, E. L. G. (2008). A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Quim Nova., 3 (7), 1820-1830. doi:10.21577/0100-4042.20170558.

Coutinho, J. P., Aguiar, A. C., Santos, P. A., Lima, J. C., Rocha, M. G. L, Zani, C. L., Alves, T. M. A., Santana, A. E. G., Pereira, M. M., & Kretli, A. U. (2013). Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon. Mem. Inst. Oswaldo Cruz., 108 (8), 974-982. doi:10.1590/0074-0276130246.

Dolabela, M. F., Póvoa, M. M., Brandão, G. C., Rocha, F. D., Soares, L. F., Paula, R. C., & Oliveira, A. B. (2015). Aspidosperma species as sources of anti-malarials: uleine is the major anti-malarial indole alkaloid from Aspidosperma parvifolium (Apocynaceae). Malar J., 14, 498. doi:10.1186/s12936-015-0997-4.

Eisenberg, D. M., Davis, R. B., Ettner, S. L., & Appel, S. (1998). Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA., 280 (18), 1569-1575. doi:10.1001/jama.280.18.1569.

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50 (3), 444-457. doi:10.1007/s10593-014-1496-1.

Frederich, M., Tits, M., & Angenot, L. (2008). Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg,. 102 (1), 11-19. doi:10.1016/j.trstmh.2007.10.002.

Freitas, F. C., Nascimento, N. R. F., Cerqueira, J. B. G., Morais, M. E. A., Pegadas, R. P., & Gonzaga-Silva, L.F. (2009). Yohimbine relaxes the human corpus cavernosum through a non-adrenergic mechanism involving the activation of K+ ATP-dependent channels. Int. J. Impot. Res., 21 (6), 356-361. doi:10.1038/ijir.2009.41.

Guilhermino, L., Diamantino, T., Silva, M. C., & Soares, A. M. V. M. (2000). Acute toxicity test with Daphnia magna: Na alternative to mammals in the Prescreening of Chemical Toxicity?. Ecotoxicol Environ Saf., 46 (3), 57-362. doi:10.1006/eesa.2000.1916.

Gomes, L. F. S. (2011). Abordagem fitoquímica, determinação da atividade antiplasmódica in vitro e avaliação da toxicidade preliminar da toxicidade do extrato hidroetanólico das cascas A. excelsum Benth (Apocynaceae). Dissertação (Mestrado), Belém: PPGCF-ICS-UFPA. Retrieved from http://repositorio.ufpa.br/jspui/handle/2011/5622.

Gorenstein, C., Scavone, C. (1999). Avanços em psicofarmacologia - mecanismos de ação de psicofármacos hoje. Rev Bras Psiquiatr., 21 (1), 64-73. Retrieved from https://www.scielo.br/scielo.php?pid=S151644461999000100012&script=sci_abstract&tlng=pt.

Hodges, G. J., & Sparks, P. A. (2013). Contributions of endothelial nitric oxide synthase, noradrenaline, and neuropeptide Y to local warming-induced cutaneous vasodilatation in men. Microvasc. res., 90, 128-134. doi:10.1016/j.mvr.2013.08.011.

Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule of five revolution. Drug Discovery today: Technologies., 1 (4), 337-341. doi:10.1016/j.ddtec.2004.11.007.

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Fenney, P. J. (2001). Experimental and computational approache to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46 (1-3), 3-26. doi:10.1016/S0169-409X(96)00423-1.

Marques, M. F. S., Kato, L., Leitao-Filho, H. F., & Reis, F. A. M. (1996). Indole alkaloids from Aspidosperma ramiflorum. Phytochemistry. 41 (3), 963-967. doi:10.1016/0031-9422(95)00660-5.

Martins, E. R., Castro, D. M., Castellani, D. C. & Dias, J. E. (2000). Plantas medicinais. Viçosa, Brasil: Editora UFV.

Martins, M. T. (2012). Estudo farmacognóstico, fitoquímico e atividades biológicas de Aspidosperma nitidum Benth. Ex Mull. Arg. Dissertação (Mestrado), Belém: PPGCF- ICS- UFPA.

Mcule. (2020). Property calculator. Retrieved july 13, 2020, from https://mcule.com/apps/property-calculator/.

Meneguetti, D. U. O., Cunha, R. M., Lima, R. A., Oliviera, F. A. S., Medeiros, D. S. S., Passarini, G. M., Medeiros, P. S. M., Militão, J. S. L. T., & Facundo, V. A. (2014). Antimalarial ethnopharmacology in the Brazilian Amazon. Rev. Ciênc. Farm. Básica Apl., 35 (4), 577-587. Retrieved from https://rcfba.fcfar.unesp.br/index.php/ojs/article/view/86.

Milliken, W. (1997) Traditional anti-malarial medicine in Roraima, Brazil. Econ Bot., 51 (3), 212-237. Retrieved from https://link.springer.com/article/10.1007/BF02862091.

Mitaine-Offer, A. C., Sauvain, M., Valentin, A., Callapa, J., Mallie, M., & Zeches-Hanrot, M. (2002). Antiplasmodial activity of Aspidosperma indole alkaloids. Phytomedicine., 9 (2), 142-145. doi:10.1078/0944-7113-00094.

Nascimento, P. C., Araújo, R. M., & Silveira, E. R. (2009). Aplicação da CLAE na análise fitoquímica de Aspidosperma nitidum. Fortaleza: 32° Reunião anual da sociedade brasileira de química. Retrieved from http://www.sbq.org.br/32ra/.

Nascimento, P. C., & Silveira, E.R. (2008). Alcalóides indólicos de Aspidosperma nitidum. Aguas de Lindoia: Reunião anual da sociedade brasileira de química. Retrieved from http://www.sbq.org.br/31ra/.

Oliveira, A. B., Dolabela, M. F., Braga, F.C., Jácome, R. L. R. P., Varotti, F., & Póvoa, M. M. (2009). Plant-derived antimalarial agents: new leads and efficient phythomedicines. Part I. Alkaloids. An. Acad. Bras. Ciênc., 81 (4), 715-740. Doi:10.1590/S0001-37652009000400011.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE. Retrieved from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf.

Pereira, M. M., Alcântara, A. F. C., Piló-Veloso, D., & Raslan, D. S. (2006). NMR structural analysis of Braznitidumine: A new Índole Alkaloid with 1,2,9- Triazabicyclo[7.2.1]System, Isolated from Aspidosperma nitidum (Apocynaceae). J. Braz. Chem. Soc., 17 (7), 1274-1280. doi:10.1590/S0103-50532006000700012.

Paula, R. C., Dolabela, M. F., & Oliveira, A. B. (2014). Aspidosperma species as sources of antimalarials. Part III. Review of traditional use and antimalarial activity. Planta Med., 80 (5), 378-386. doi:10.1055/s-0034-1368168.

Pereira, M. M., Jácome, R. L. R. P., Alcantara, A. F. C., Alves, R. B., & Raslan, D. S. (2007). Alcalóides indólicos isolados de espécies do gênero Aspidosperma (Apocynaceae). Quim. Nova., 30 (4), 970-983. doi:10.1590/S0100-40422007000400037.

Pinto, L. N., & Barbosa, W. L. R. (2009). Etnofarmácia no municipio de Igarapé Miri-Pa. In: BARBOSA WLR (org.), Etnofarmácia: fitoterapia popular e ciência farmacêutica (pp 49-139). Belém, Brasil: NUMA/UFPA.

Preadmet. (2020). ADME TOX calculation. Retrieved july 6, 2020, from http://preadmet.bmdrc.kr.

Romeiro, L. A. S., Fraga, C. A. M., & Barreiro E. J. (2003). Novas estratégias para o tratamento da depressão: uma visão da química medicinal. Quim. nova., 26 (3), 347-358. doi:10.1590/S0100-40422003000300012.

Santos, M. A. S., Kahwage, C. C., Coelho-Ferreira, M. R., & Sampaio, N. A. (2005). Medicinas Tradicionais no Vale do Rio Negro (Amazonas, Brasil). Observações ale do Rio Negro (Amazonas, Brasil). Observações sobre Etnofarmacologia e o Uso da Planta Saracura-Mirá (Ampelozizyphus amazonicus): Atividade Farmacológica e/ou Eficácia Simbólica. Bol. Mus. Para. Emílio Goeldi, sér. Ciências Humanas., 1 (1), 137-147. Retrieved from https://repositorio.museugoeldi.br/bitstream/mgoeldi/507/1/B%20MPEG%20C%20Hum%201%281%29%202005%20SANTOS.pdf.

Silva, J. A., Apolinário, A. C., Souza, M. S. R., Damasceno, B. P. G. L., & Medeiros, A. C. D. (2010). Administração cutânea de fármacos: desafios e estratégias para o desenvolvimento de formulações transdérmicas. Rev Ciênc Farm Básica Apl., 31 (3), 125-131. Retrieved from file:///C:/Users/Valdicley/Downloads/357-Article%20Text-1081-1-10-20190919%20(1).pdf.

Silva, L. F. R., Montoia, A., Amorim, R. C., Melo, M. R., Henrique, M.C., Nunomura, S. M., Costa, M. R., Andrade-Neto, V. F., Costa, D. S., Dantas, G., Lavrado, J., Moreira, R., Paulo, A., Pinto, A. C., Tadei, W. P., Zacardi, R. S., Eberlin, M. N., & Pohlit, A. M. (2012). Comparative in vitro and in vivo antimalarial activity of the índole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomedicine., 20, 71-76. doi:10.1016/j.phymed.2012.09.008.

Sousa, G. S. (1971). Tratado descritivo do Brasil em 1587. São Paulo, Brasil: Companhia Ed. Nacional e Ed. da USP.

Swart, H., Breytenbach, J. C., Hadgraft, J., & Plessis, J. (2005). Synthesis and transdermal penetration of NSAID glycoside esters. Int. J. pharm., 301, 71-79. doi:10.1016/j.ijpharm.2005.05.030.

Veiga-Jr., V. F., Pinto, A. C., & Maciel, M. A. M. (2005). Plantas medicinais: cura segura?. Quim. Nova., 28 (3), 519-528. doi:10.1590/S0100-40422005000300026.

Waterman, P. G. (1975). New combinations in Zanthoxylum L. Taxon., 24, 361-366. doi:10.2307/1218347.

Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur. J. Pharm., 10, 195-204. doi:10.1016/s0928-0987(00)00076-2

Yazdanian, M., Glynn, S. L., Wright, J. L., & Hawi, A. (1998). Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res., 15 (9), 1490-1494. Retrieved from https://link.springer.com/article/10.1023/A:1011930411574.

Zucker, E. (1985). Hazard Evaluation Division Standard Evaluation Procedure: Acute toxicity test for freshwater Fish. Washington, USA: USEPA. Retrieved from https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB86129277.xhtml.

Downloads

Published

30/09/2020

How to Cite

CORREA-BARBOSA, J.; SILVA, M. C. M. da; PERCÁRIO, S.; BRASIL, D. do S. B.; DOLABELA, M. F.; VALE, V. V. . Aspidosperma excelsum and its pharmacological potential: in silico studies of pharmacokinetic prediction, toxicological and biological activity. Research, Society and Development, [S. l.], v. 9, n. 10, p. e3629108635, 2020. DOI: 10.33448/rsd-v9i10.8635. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8635. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences