Soil phosphorus fractions in an apple orchard with different weed managements

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8767

Keywords:

Malus domestic; Biological P; Geochemical P; Nutrient cycling.

Abstract

The presence of weeds in apple orchards affects the dynamics of nutrients in the soil, including phosphorus (P). The objective of this study was to evaluate changes in distribution of P fractions in the soil of an apple orchard under different weed managements. The experiment was conducted in an apple orchard in the municipality of Urubici, Santa Catarina, Brazil. The following treatments were implemented in 2011: no weed management (NWM), desiccation of weeds in the apple-tree row (DR), and hoeing of weeds in the apple-tree row (HR). Soil samples of the 0-2.5, 2.5-5, 5-10, 10-15 and 15-20 cm layers were collected in the apple-tree rows at 24 months after the implementation of the experiment. The samples were subjected to chemical fractionation of P, obtaining the following fractions: PiAER, PiNaHCO3, PoNaHCO3, PiNaOH, PoNaOH, PiHCl, PiNaOH05, PoNaOH05, and Presidual. The presence of weeds increased the contents of the following soil P fractions in the surface layers: PiAER, PiNaHCO3, and PoNaHCO3, which are bioavailable to plants. A higher proportion of organic forms of P in the soil was found when the weeds were hoed; these fractions can be mineralized and used for nutrition of apple trees when labile P forms are exhausted.

References

Aswitha, K., Malarvizhi, P., Meena, S., & Kalaiselvi, T. (2019). Interaction effect of vesicular arbuscular mycorrhiza on increasing phosphorus availability in alkaline soil, 8(3), 2408–2412.

Brunetto, G., Lorensini, F., Ceretta, C. A., Gatiboni, L. C., Trentin, G., Girotto, E. de Melo, G. W. (2013). Soil Phosphorus Fractions in a Sandy Typic Hapludaft as Affected by Phosphorus Fertilization and Grapevine Cultivation Period. Communications in Soil Science and Plant Analysis, 44(13), 1937–1950.

Brunetto, G., Ventura, M., Scandellari, F., Ceretta, C. A., Kaminski, J., de Melo, G. W., & Tagliavini, M. (2011). Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutrient Cycling in Agroecosystems, 90(3), 299–308.

Cardoso, D. P., Silva, M. L. N., de Carvalho, G. J., de Freitas, D. A. F., & Avanzi, J. C. (2012). Cover crops to control soil, water and nutrient losses by water erosion. Revista Brasileira de Engenharia Agricola e Ambiental, 16(6), 632–638.

Casali, C. A., Tiecher, T., Kaminski, J., Santos, D. R dos, Calegari, A., Piccin, R. (2016). Benefícios do uso de plantas de cobertura de solo na ciclagem de fósforo. Manejo e conservação do solo e da água em pequenas propriedades rurais no sul do Brasil: práticas alternativas de manejo visando a conservação do solo e da água. 2, 23-33.

Comin, J., de Oliveira, R. A., Loss, A., Salume, J., Sete, P., Müller Junior, V., Ventura, B. S, Souza, M., Nava, G., Lourenzi, C. R., Soares, C. R. F. S., Lovato, P. E.; de Melo, G. W. B., Brunetto, G. & Ferreira, P. (2017). Uso de plantas de cobertura de inverno e ciclagem de nutrientes em pomares de pereira. Embrapa Clima Temperado-Capítulo em livro técnico (INFOTECA-E).

Condron, L. M., Goh, K. M., & Newman, R. H. (1985). Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. Journal of Soil Science, 36(2), 199-207.

Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64(3-4), 197-214.

Dick, W. A., & Tabatabai, M. A. (1977). Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. Journal of Environmental Quality, 6(1), 82-85.

Fink, J. R., Inda, A. V., Bayer, C., Torrent, J., & Barrón, V. (2014). Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems. Acta Scientiarum. Agronomy, 36(3), 379-387.

Gatiboni, L. C., dos Santos Rheinheimer, D., Fabiani Claro Flores, A., Anghinoni, I., Kaminski, J., & Angélica Silveira de Lima, M. (2005). Phosphorus Forms and Availability Assessed by 31P‐NMR in Successively Cropped Soil. Communications in Soil Science and Plant Analysis, 36(19-20), 2625-2640.

Goulart Junior, R., Reiter, J. M. W., Mondardo, M. (2017). Relatório sobre a Fruticultura Catarinense: Fruticultura em números - Safra 2014/15. Florianópolis: Epagri. 114.

Herbert, D. B., Gross, T., Rupp, O., & Becker, A. (2019). Transcriptional changes suggest a major involvement of Gibberellins in Trifolium pratense regrowth after mowing. bioRxiv, 775841.

Hedley, M. J., Stewart, J. W. B., & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970-976.

IBGE. Levantamento sistemático da produção agrícola. 2017. Retriever from ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/2017/lspa_201701.pdf.

Leite, J. N. F., Cruz, M. C. P. D., Ferreira, M. E., Andrioli, I., & Braos, L. B. (2016). Frações orgânicas e inorgânicas do fósforo no solo influenciadas por plantas de cobertura e adubação nitrogenada. Pesquisa Agropecuária Brasileira, 51(11), 1880-1889.

Liu, G., Li, X., & Zhang, Q. (Eds.). (2019). Sheepgrass (Leymus Chinensis): An Environmentally Friendly Native Grass for Animals. Springer Nature.

Monteiro, F. P., Pacheco, L. P., Lorenzetti, E. R., Armesto, C., de SOUZA, P. E., & de ABREU, M. S. (2012). Exsudatos radiculares de plantas de cobertura no desenvolvimento de Sclerotinia sclerotiorum. Bioscience Journal, 28(1).

Mora-Macías, J., Ojeda-Rivera, J. O., Gutiérrez-Alanís, D., Yong-Villalobos, L., Oropeza-Aburto, A., Raya-González, J., ... & Herrera-Estrella, L. (2017). Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proceedings of the National Academy of Sciences, 114(17), E3563-E3572.

Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36.

Oliveira, B. S., Ambrosini, V. G., Trapp, T., dos Santos, M. A., Sete, P. B., Lovato, P. E., & Toselli, M. (2016). Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutrient cycling in agroecosystems, 104(2), 247-258.

Rheinheimer, D. D. S., & Anghinoni, I. (2001). Distribuição do fósforo inorgânico em sistemas de manejo de solo. Pesquisa agropecuária brasileira, 36(1), 151-160.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F., Oliveira, J. B. (2013). Sistema brasileiro de classificação de solos. Embrapa, 353.

Schmitt, D. E., Comin, J. J., Gatiboni, L. C., Tiecher, T., Lorensini, F., Melo, G. W. B. D., & Brunetto, G. (2013). Phosphorus fractions in sandy soils of vineyards in southern Brazil. Revista Brasileira de Ciência do Solo, 37(2), 472-481.

Schmitt, D. E., Brunetto, G., Santos, E. D., Wagner, W. D. L., Sete, P. B., Souza, M., ... & Couto, R. D. R. (2017). Phosphorus fractions in apple orchards in southern Brazil. Bragantia, 76(3), 422-432.

da Silva, M. P., Arf, O., de Sá, M. E., Abrantes, F. L., Berti, C. L. F., & de Souza, L. C. D. (2017). Plantas de cobertura e qualidade química e física de Latossolo Vermelho distrófico sob plantio direto. Revista Brasileira de Ciências Agrárias, 12(1), 60-67.

Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal.(trad.). SANTARÉM, ER et. al, 4.

Tiecher, T., Gomes, M. V., Ambrosini, V. G., Amorim, M. B., & Bayer, C. (2018). Assessing linkage between soil phosphorus forms in contrasting tillage systems by path analysis. Soil and Tillage Research, 175, 276-280.

Vieira, E. L., De Souza, G., Dos Santos, A., & Dos Santos, J. (2010). Manual de fisiología vegetal. Editorial EDUFMA. Sao Luis.

Wang, S., He, X., & Ye, S. (2020). Soil aggregation and aggregate-associated carbon, nitrogen, and phosphorus under different aged tea (Camellia sinensis L.) plantations in hilly region of southern Guangxi, China. Scientia Horticulturae, 262, 109007.

Wang, Y., Chen, X., Lu, C., Huang, B., & Shi, Y. (2017). Different mechanisms of organic and inorganic phosphorus release from Mollisols induced by low molecular weight organic acids. Canadian Journal of Soil Science, 98(1), 15-23.

Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H. & Shen, J. (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus‐acquisition strategies of 16 crop species. New Phytologist, 223(2), 882-895.

Yang, J. X., Peng, Y., & He, W. M. (2020). Organic and inorganic phosphorus differentially influence invasive forbs. Flora, 263, 151532.

Downloads

Published

29/09/2020

How to Cite

LIMA, A. P.; LOURENZI, C. R.; COMIN, J. J.; LOSS, A.; BRUNETTO, G.; SOUZA, M.; VENTURA, B. S.; TRAPP, T.; FERREIRA, G. W. Soil phosphorus fractions in an apple orchard with different weed managements. Research, Society and Development, [S. l.], v. 9, n. 10, p. e3449108767, 2020. DOI: 10.33448/rsd-v9i10.8767. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8767. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences