Nα-lauroyl-l-arginine ethyl ester monohydrochloride, an antimicrobial agent and its use: a review
DOI:
https://doi.org/10.33448/rsd-v9i10.8996Keywords:
LAE; Food safety; Cationic surfactant; Broad spectrum of action; GRAS.Abstract
Growing demand for safe foods coupled with the intent to reduce food waste, seeing as much of it is lost through contamination by spoilage microorganisms, leads to research on antimicrobial agents such as LAE (Nα-lauroyl-L-arginine ethyl ester monohydrochloride). This compound has great antimicrobial potential against a range of microorganisms and, therefore, its use may be of extreme importance for the food industry in the search for antimicrobial agents with a broad spectrum of action. Thus, the objective of this article is to review the research involving LAE, when studied in vitro, in vivo and in the incorporation in different packaging in order to be released in a controlled manner for food products. In conclusion, despite the fact that it has a strong antimicrobial activity, it is still little known and is not accepted in all countries, including Brazil. With greater insight into this antimicrobial agent, more countries could use it, supporting worldwide in food preservation.
References
Al-Nemr, T. M., Mohamed, S. E., Barbabosa, A., & Salem, A. Z. M. (2016). Influence of nisin and lauryl arginine ester against some foodborne pathogens in recombined feta and processed spread cheese. Journal of Food Safety, 36(2), 172–179. https://doi.org/10.1111/jfs.12224.
Apicella, A., Scarfato, P., D’Arienzo, L., Garofalo, E., Di Maio, L., & Incarnato, L. (2018). Antimicrobial biodegradable coatings based on LAE for food packaging applications. AIP Conference Proceedings 1981, 2018, 020010 https://doi.org/10.1063/1.5045872.
Asker, D., Weiss, J., & McClements, D. J. (2009). Analysis of the interactions of a cationic surfactant (Lauric arginate) with an anionic biopolymer (Pectin): Isothermal titration calorimetry, light scattering, and microelectrophoresis. Langmuir, 25(1), 116–122. https://doi.org/10.1021/la803038w.
Asker, D., Weiss, J., & McClements, D. J. (2011). Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides. Journal of Agricultural and Food Chemistry, 59(3), 1041–1049. https://doi.org/10.1021/jf103073w.
Aznar, M., Gómez-Estaca, J., Vélez, D., Devesa, V., & Nerín, C. (2013). Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food and Chemical Toxicology, 56, 363–370. https://doi.org/10.1016/j.fct.2013.02.018.
Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2014). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491–1504. https://doi.org/10.1007/s11192-013-1148-8.
Becerril, R., Manso, S., Nerin, C., & Gómez-Lus, R. (2013). Antimicrobial activity of Lauroyl Arginate Ethyl (LAE), against selected food-borne bacteria. Food Control, 32(2), 404–408. https://doi.org/10.1016/j.foodcont.2013.01.003.
Brasil - Ministério da Saúde. Doenças transmitidas por alimentos: causas, sintomas, tratamento e prevenção. (2019). http://www.saude.gov.br/saude-de-a-z/doencas-transmitidas-por-alimentos/ Accessed 09 December 2019.
Broner, S., Torner, N., Dominguez, A., Martínez, A., & Godoy, P. (2010). Sociodemographic inequalities and outbreaks of foodborne diseases: An ecologic study. Food control, 21(6), 947–951. https://doi.org/10.1016/j.foodcont.2009.12.002.
Coronel-León, J., López, A., Espuny, M. J., Beltran, M. T., Molinos-Gómez, A., Rocabayera, X., & Manresa, A. (2016). Assessment of antimicrobial activity of Nα -lauroyl arginate ethylester (LAE®) against Yersinia enterocolitica and Lactobacillus plantarum by flow cytometry and transmission electron microscopy. Food Control, 63, 1–10. https://doi.org/10.1016/j.foodcont.2015.10.050.
Damodaran, S., & Parkin, K. L. (2017). Fennema’s food chemistry. (5th ed.). Boca Raton: CRC press.
Dayrit, F. M. (2015). The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists’ Society, 92(1), 1–15. https://doi.org/10.1007/s11746-014-2562-7.
EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to an application on the use of ethyl lauroyl arginate as a food additive question number EFSA-Q-2006-035. (2007). https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2007.511/ Accessed 09 December 2019.
FAO. FAO: 30% de toda a comida produzida no mundo vai parar no lixo. (2017). https://nacoesunidas.org/fao-30-de-toda-a-comida-produzida-no-mundo-vai-parar-no-lixo/ Accessed 09 December 2019.
FAO/WHO. The codex alimentarius commission and the fao/who food standards programme. (2003). http://www.fao.org/3/y5307e/y5307e01.htm/ Accessed 09 December 2019.
Gaikwad, K. K., Lee, S. M., Lee, J. S., & Lee, Y. S. (2017). Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. Journal of Food Measurement and Characterization, 11(4), 1706–1716. https://doi.org/10.1007/s11694-017-9551-0.
Gamarra-Montes, A., Missagia, B., Morató, J., & Muñoz-Guerra, S. (2017). Antibacterial films made of ionic complexes of Poly(γ-glutamic acid) and ethyl lauroyl arginate. Polymers, 10(1), 1-14 . https://doi.org/10.3390/polym10010021.
Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Siesler, H. W., & Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19, 31–39. https://doi.org/10.1016/j.fpsl.2018.11.015.
Hernandez, D., Cardell, E., & Zarate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin‐like substance produced by Lactobacillus plantarum TF711. Journal of applied microbiology, 99(1), 77–84. https://10.1111/j.1365-2672.2005.02576.x.
Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Gavara, R., & Rollini, M. (2013). Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-l-arginate) and its application to fresh chicken. International Journal of Food Microbiology, 165(3), 339–345. https://doi.org/10.1016/j.ijfoodmicro.2013.06.003.
Jansen, S., Dera, R. T. S., Ruth, M. S. M., Syofyasti, M. N., & Yosy, C. E. S. (2018). Analysis of nitrite and nitrate in the corned beef and smoked beef by Using Visible Spectrophotometry method. IOP Conference Series: Earth and Environmental Science, 205(1), 1-6. 10.1088/1755-1315/205/1/012039.
Kozak, S. M., Brown, S. R. B., Bobak, Y., & D’Amico, D. J. (2018). Control of Listeria monocytogenes in whole milk using antimicrobials applied individually and in combination. Journal of Dairy Science, 101(3), 1889–1900. https://doi.org/10.3168/jds.2017-13648
Ma, Q., Zhang, Y., & Zhong, Q. (2016). Physical and antimicrobial properties of chitosan films incorporated with lauric arginate, cinnamon oil, and ethylenediaminetetraacetate. LWT - Food Science and Technology, 65, 173–179. https://doi.org/10.1016/j.lwt.2015.08.012.
Mack, C. A. (2012). How to write a good scientific paper: title, abstract, and keywords. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11(2), 20101. https://doi.org/10.1117/1.JMM.11.2.020101.
Martínez, M. L., Labuckas, D. O., Lamarque, A. L., & Maestri, D. M. (2010). Walnut (Juglans regia L.): genetic resources, chemistry, by-products. Journal of the Science of Food and Agriculture, 90(12), 1959–1967. https://doi.org/10.1002/jsfa.4059.
Martins, F. C. O. L., Sentanin, M. A., & De Souza, D. (2019). Analytical methods in food additives determination: Compounds with functional applications. Food Chemistry, 272, 732–750. https://doi.org/10.1016/j.foodchem.2018.08.060.
Moore, A., Nannapaneni, R., Kiess, A., & Sharma, C. S. (2017). Evaluation of USDA approved antimicrobials on the reduction of Salmonella and Campylobacter in ground chicken frames and their effect on meat quality. Poultry science, 96(7), 2385–2392. https://doi.org/10.3382/ps/pew497.
Moreno, O., Atarés, L., Chiralt, A., Cruz-Romero, M. C., & Kerry, J. (2018). Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. Lwt, 97, 483–490. https://doi.org/10.1016/j.lwt.2018.07.005
Moreno, O., Cárdenas, J., Atarés, L., & Chiralt, A. (2017). Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydrate Polymers, 178, 147–158. https://doi.org/10.1016/j.carbpol.2017.08.128.
Muriel-Galet, V., Carballo, G. L., Hernández-Muñoz, P., & Gavara, R. (2016). Ethyl Lauroyl Arginate (LAE): Usage and Potential in Antimicrobial Packaging. In J. Barros-Velázquez (Eds.), Antimicrobial Food Packaging (pp. 313-318). London: Elsevier science.
Nair, D. V. T., Nannapaneni, R., Kiess, A., Mahmoud, B., & Sharma, C. S. (2014). Antimicrobial efficacy of lauric arginate against Campylobacter jejuni and spoilage organisms on chicken breast fillets. Poultry Science, 93(10), 2636–2640. https://doi.org/10.3382/ps.2013-03858.
Nübling, S., Wohlt, D., Saile, N., Weiss, A., & Schmidt, H. (2017). Antimicrobial effect of lauroyl arginate ethyl on Escherichia coli O157:H7 and Listeria monocytogenes on red oak leaf lettuce. European Food Research and Technology, 243(5), 1–9. https://doi.org/10.1007/s00217-016-2802-1.
Rodríguez, E., Seguer, J., Rocabayera, X., & Manresa, A. (2004). Cellular effects of monohydrochloride of L-arginine, Nα- lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. Journal of Applied Microbiology, 96(5), 903–912. https://doi.org/10.1111/j.1365-2672.2004.02207.x.
Ruckman, S. A., Rocabayera, X., Borzelleca, J. F., & Sandusky, C. B. (2004). Toxicological and metabolic investigations of the safety of N-α-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food and Chemical Toxicology, 42(2), 245–259. https://doi.org/https://doi.org/10.1016/j.fct.2003.08.022.
SCOPUS. Analyze search results - antimicrobial and lae. (2019a). https://www-scopus.ez26.periodicos.capes.gov.br/term/analyzer.uri?sid=4d09ecee50cf9ca603c0aad4f6e52fac&origin=resultslist&src=s&s=%28TITLE-ABS-KEY%28lae%29+AND+TITLE-ABS-KEY%28antimicrobial%29%29&sort=plf-f&sdt=cl&sot=b&sl=53&count=104&analyzeResults=Analyze+results&cluster=scopubyr%2c%222020%22%2cf&txGid=51d09f83417f4bf4bb0b5956145fdfef (Accessed April 27, 2020).
SCOPUS. Analyse search results - antimicrobial and lae. (2019b). https://www-scopus.ez26.periodicos.capes.gov.br/term/analyzer.uri?sid=4d09ecee50cf9ca603c0aad4f6e52fac&origin=resultslist&src=s&s=%28TITLE-ABS-KEY%28lae%29+AND+TITLE-ABS-KEY%28antimicrobial%29%29&sort=plf-f&sdt=cl&sot=b&sl=53&count=104&analyzeResults=Analyze+results&cluster=scopubyr%2c%222020%22%2cf&txGid=51d09f83417f4bf4bb0b5956145fdfef (Accessed April 27, 2020).
Sharma, R., & Ghoshal, G. (2018). Emerging trends in food packaging. Nutrition and Food Science, 48(5), 764–779. https://doi.org/10.1108/NFS-02-2018-0051.
Soni, K. A., Shen, Q., & Nannapaneni, R. (2014). Reduction of Listeria monocytogenes in cold-smoked salmon by bacteriophage P100, nisin and lauric arginate, singly or in combinations. International Journal of Food Science and Technology, 49(8), 1918–1924. https://doi.org/10.1111/ijfs.12581.
VEDEQSA. Etil lauroil arginato E-243 (LAE®): Um nuervo conservante para la industria alimentaria. (2015). http://media.firabcn.es/content/S051015/docs/presentaciones_IMP/VEDEQSA-MIRENAT.pdf/ Accessed 09 December 2019.
VEDEQSA. Specialties for the food industry. (2018). https://www.lamirsa.com/catalogo/ved2018eng/mobile/html5forpc.html/ Accessed 09 December 2019.
Xu, X.-H., Jiang, Z.-L., Feng, F.-Q., & Lu, R.-R. (2018). Mechanisms of N α-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. Journal of food science and technology, 55(9), 3675–3682. https://doi.org/10.1007/s13197-018-3296-6.
Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. https://doi.org/10.1111/1541-4337.12322.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Joyce Fagundes Gomes Motta; Regiane Ribeiro-Santos; Maria Clara Guimarães; Lívia de Aquino Garcia Moura; Letícia Vitorazi; Nathália Ramos de Melo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.