Photobiomodulation as an adjunct in the treatment of acute lung injury due to sepsis

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9024

Keywords:

Phototherapy; Lasers; Sepsis; Lung injury; Rehabilitation.

Abstract

Sepsis is considered a major health problem, with acute lung injury (ALI) being one of the most serious complications of septic shock. It is known that an ALI is a disease characterized by damage to the alveolar epithelium, infiltration of inflammatory cells, increased permeability of the alveolar - capillary barrier, interstitial edema that cause an imbalance in the condition and pulmonary perfusion, with a high morbidity rate and in the units intensive care. The treatment of ALI has a high cost and is often not sufficiently effective and, therefore, the search for new therapies is of extreme clinical importance. Photobiomodulation (PBM) through lasers and LEDs has to be a promising tool with good results for several inflammatory diseases, including changes that affect the respiratory system. Within this context, the objective of this study is to provide, through a narrative review, an understanding of the current available evidence on the importance of PBM in the treatment of respiratory disorders and its possible applicability in ALI due to sepsis. The searches were performed in the bibliographic databases of PubMed / MEDLINE, Virtual Health Library (VHL), Web of Science and SciELO. The evidence found in this study points out that PBM can be proposed as a support for conventional medical therapy in the treatment of ALI arising from sepsis, due to the potential to prevent the progression of lung parenchyma injury, attenuate the inflammatory condition, reduction process and reduce the recovery time of the patient with APL due to sepsis.

Author Biography

Lívia Assis, Universidade Brasil

Professor of Biomedical Engineering, University Brasil, São Paulo, SP, Brazil

References

Abraham, E., Matthay, M. A., Dinarello, C. A., Vincent, J. L., Cohen, J., Opal, S. M., Glauser, M., Parsons, P., Fisher, C. J., Jr. & Repine, J. E. (2000). Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Critical care medicine, 28(1), 232–235. https://doi.org/10.1097/00003246-200001000-00039

Aimbire F., Santos F. V., Albertini R., Castro-Faria-Neto H. C., Mittmann J. & Pacheco-Soares C. (2008) Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol. Apr;8(4):603-5. doi: 10.1016/j.intimp.2007.12.007. Epub 2008 Jan 15. PMID: 18328453.

Aimbire, F., Albertine, R., de Magalhães, R. G., Lopes-Martins, R.A., Castro-Faria-Neto, H. C., Zângaro, R. A., Chavantes, M. C. & Pacheco, M. T. (2005). Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers in medical science, 20(1), 11–20. https://doi.org/10.1007/s10103-005-0339-9

Aimbire, F., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Leonardo, P. S., Iversen, V. V., Lopes-Martins, R. A., & Bjordal, J. M. (2006). Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and laser surgery, 24(1), 33–37. https://doi.org/10.1089/pho.2006.24.33

Aimbire, F., Lopes-Martins, R. A., Albertini, R., Pacheco, M. T., Castro-Faria-Neto, H. C., Martins, P. S. & Bjordal, J. M. (2007). Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomedicine and laser surgery, 25(2), 112–117. https://doi.org/10.1089/pho.2006.1041

Amirov N. B. (2002). Pokazateli membrannoĭ pronitsaemosti, mikrotsirkuliatsii, funktsii vneshnegio dykhaniia i soderzhanie mikroélementov pri medikamentozno-lazernoĭ terapii pnevmonii [Parameters of membrane permeability, microcirculation, external respiration, and trace element levels in the drug-laser treatment of pneumonia]. Terapevticheskii arkhiv, 74(3), 40–43.

Artigas, A., Bernard, G. R., Carlet, J., Dreyfuss, D., Gattinoni, L., Hudson, L., Lamy, M., Marini, J. J., Matthay, M. A., Pinsky, M. R., Spragg, R. & Suter, P. M. (1998). The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. American journal of respiratory and critical care medicine, 157(4 Pt 1), 1332–1347. https://doi.org/10.1164/ajrccm.157.4.ats2-98

Assis, L., Moretti, A. I., Abrahão, T. B., Cury, V., Souza, H. P., Hamblin, M. R. & Parizotto, N. A. (2012). Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers in surgery and medicine, 44(9), 726–735. https://doi.org/10.1002/lsm.22077

Barreto, M. F., Dellaroza, M. S., Kerbauy, G & Grion, C. M. (2016). Sepsis in a university hospital: a prospective study for the cost analysis of patients' hospitalization. Revista da Escola de Enfermagem da U S P, 50(2), 302–308. https://doi.org/10.1590/S0080-623420160000200017

Bernard, G. R., Artigas, A., Brigham, K. L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J. R., Morris, A., & Spragg, R. (1994). The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American journal of respiratory and critical care medicine, 149(3 Pt 1), 818–824. https://doi.org/10.1164/ajrccm.149.3.7509706

Bjordal, J. M., Lopes-Martins, R. A. B., & Iversen, V. V. (2010) The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Medicine 2010. 15: 286–293 Corpus ID: 27687471. doi: 10.1179/1743288X10Y.0000000001.

Borges, A. C. do N., Costa, A. L., Bezerra, J. B., Araújo, D. S., Soares, M. A. A., Gonçalves, J. N. de A., Rodrigues, D. T. da S., Oliveira, E. H. S. de, Luz, L. E. da, Silva, T. R., & Silva, L. G. de S. (2020). Epidemiology and pathophysiology of sepsis: an review. Research, Society and Development, 9(2), e187922112. https://doi.org/10.33448/rsd-v9i2.2112

Burduli, N. M., & Aksenova, I. Z. (2007). Klinicheskaia meditsina, 85(9), 58–61.

Chung, H., Dai, T., Sharma, S. K., Huang, Y. Y., Carroll, J. D., & Hamblin, M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40(2), 516–533. https://doi.org/10.1007/s10439-011-0454-7

Costa, S. G., Barioni, É. D., Ignácio, A., Albuquerque, J., Câmara, N., Pavani, C., Vitoretti, L. B., Damazo, A. S., Farsky, S. & Lino-Dos-Santos-Franco, A. (2017). Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Scientific reports, 7(1), 12670. https://doi.org/10.1038/s41598-017-13117-5

da Cunha Moraes, G., Vitoretti, L. B., de Brito, A. A., Alves, C. E., de Oliveira, N., Dos Santos Dias, A., Matos, Y., Oliveira-Junior, M. C., Oliveira, L., da Palma, R. K., Candeo, L. C., Lino-Dos-Santos-Franco, A., Horliana, A., Gimenes Júnior, J. A., Aimbire, F., Vieira, R. P., & Ligeiro-de-Oliveira, A. P. (2018). Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor. Oxidative medicine and cellular longevity, 2018, 6798238. https://doi.org/10.1155/2018/6798238

da Silva Sergio, L. P., Thomé, A., da Silva Neto Trajano, L. A., Vicentini, S. C., Teixeira, A. F., Mencalha, A. L., de Paoli, F. & de Souza da Fonseca, A. (2019). Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats. Lasers in medical science, 34(1), 157–168. https://doi.org/10.1007/s10103-018-2656-9

da Silva, J., Dos Santos, S. S., de Almeida, P., Marcos, R. L. & Lino-Dos-Santos-Franco, A. (2020). Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers in medical science, 10.1007/s10103-020-03119-7. Advance online publication. https://doi.org/10.1007/s10103-020-03119-7

de Brito, A. A., da Silveira, E. C., Rigonato-Oliveira, N. C., Soares, S. S., Brandao-Rangel, M., Soares, C. R., Santos, T. G., Alves, C. E., Herculano, K. Z., Vieira, R. P., Lino-Dos-Santos-Franco, A., Albertini, R., Aimbire, F. & de Oliveira, A. P. (2020). Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. Journal of photochemistry and photobiology. B, Biology, 203, 111731.

https://doi.org/10.1016/j.jphotobiol.2019.111731

de Lima, F. M., Albertini, R., Dantas, Y., Maia-Filho, A. L., Santana, C., Castro-Faria-Neto, H. C., França, C., Villaverde, A. B. & Aimbire, F. (2013). Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochemistry and photobiology, 89(1), 179–188. https://doi.org/10.1111/j.1751-1097.2012.01214.x

de Lima, F. M., Moreira, L. M., Villaverde, A. B., Albertini, R., Castro-Faria-Neto, H. C. & Aimbire, F. (2011a). Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers in medical science, 26(3), 389–400. https://doi.org/10.1007/s10103-010-0874-x

de Lima, F. M., Villaverde, A. B., Albertini, R., Corrêa, J. C., Carvalho, R.L., Munin, E., Araújo, T., Silva, J. A. & Aimbire, F. (2011b). Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers in surgery and medicine, 43(5), 410–420. https://doi.org/10.1002/lsm.21053

Derbenev V. A., Mikhailov V. A. & Denisov I. N. (2000). Use of low-level laser therapy (LLLT) in the treatment of some pulmonary diseases: ten-year experience. Proc SPIE 2000;4166:323–5. doi: 10.1117/12.389506.

Erkinovna T. B., & Tulkunovna M. H. (2006) Efficacy of laser therapy in infants with infectious-inflammatory respiratory diseases. АКРОНИМ: European Science Review. ISSN: Печатный: 2310-5577. Available at: https:// cyberleninka.ru/article/n/efficacy-of-laser-therapy-in-infants-with-infec- tious-inflammatory-respiratory-diseases [Accessed 1 April 2020.]

Esposito, S., & Principi, N. (2020). Adjunctive therapy to treat neonatal sepsis. Expert review of clinical pharmacology, 13(1), 65–73. https://doi.org/10.1080/17512433.2020.1699790

Finsen, N. (1991). Phototherapy, Edward Arnold, London.

Hamblin M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337–361. https://doi.org/10.3934/bio phy.2017.3.337

Hamblin, M. R., Nelson, S. T., & Strahan, J. R. (2018). Photobiomodulation and Cancer: What Is the Truth?. Photomedicine and laser surgery, 36(5), 241–245. https://doi.org/10.1089/pho.2017.4401

Huang, Z., Fu, Z., Huang, W., & Huang, K. (2020). Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. The American journal of emergency medicine, 38(3), 641–647. https://doi.org/10.1016/j.ajem.2019.10.023

Isabella, A., Silva, J., da Silva, T., Rodrigues, M., Horliana, A., Motta, L. J., Bussadori, S. K., Pavani, C. & Silva, D. (2019). Effect of irradiation with intravascular laser on the hemodynamic variables of hypertensive patients: Study protocol for prospective blinded randomized clinical trial. Medicine, 98(14), e15111. https://doi.org/10.1097/MD.00 00000000015111

Karu T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of photochemistry and photobiology. B, Biology, 49(1), 1–17. https://doi.org/10.1016/S1011-1344(98)00219-X

Kim, W. Y. & Hong, S. B. (2016). Sepsis and Acute Respiratory Distress Syndrome: Recent Update. Tuberculosis and respiratory diseases, 79(2), 53–57. https://doi.org/10.4046/trd.2016.79.2.53

Li, J. T., Melton, A. C., Su, G., Hamm, D. E., LaFemina, M., Howard, J., Fang, X., Bhat, S., Huynh, K. M., O'Kane, C. M., Ingram, R. J., Muir, R. R., McAuley, D. F., Matthay, M. A. & Sheppard, D. (2015). Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome. Journal of immunology (Baltimore, Md.: 1950), 195(1), 87–95. https://doi.org/10.4049/jimmunol.1500054

Macedo, D. B., Tim R. C., Macedo, J. B. S. C., Macedo, G. M., Martignago, C. C. S., & Assis, L. (2020). Therapeutic perspective of light for coronavirus treatment. Research, Society and Development, 9(8), e766986320. http://dx.doi.org/10.33448/rsd-v9i8.6320

Mafra de Lima, F., Naves, K. T., Machado, A. H., Albertini, R., Villaverde, A. B. & Aimbire, F. (2009). Lung inflammation and endothelial cell damage are decreased after treatment with phototherapy (PhT) in a model of acute lung injury induced by Escherichia coli lipopolysaccharide in the rat. Cell biology international, 33(12), 1212–1221. https://doi.org/10.1016/j.cellbi.2009.04.025

Mafra de Lima, F., Villaverde, A. B., Salgado, M. A., Castro-Faria-Neto, H. C., Munin, E., Albertini, R., & Aimbire, F. (2010). Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. Journal of photochemistry and photobiology. B, Biology, 101(3), 271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012

Matioli, M. R., Sonobe, H. M., Sato, S., & Stabile, A. M. (2019). The experience of sepsis and the health-related quality of life. Research, Society and Development, 8(11), e328111477. https://doi.org/10.33448/rsd-v8i11.1477

Mikhaylov V. A. (2015). The use of Intravenous Laser Blood Irradiation (ILBI) at 630-640 nm to prevent vascular diseases and to increase life expectancy. Laser therapy, 24(1), 15–26. https://doi.org/10.5978/islsm.15-OR-02

Miranda da Silva, C., Peres Leal, M., Brochetti, R. A., Braga, T., Vitoretti, L. B, Saraiva Câmara, N. O., Damazo, A. S., Ligeiro-de-Oliveira, A. P., Chavantes, M. C. & Lino-Dos-Santos-Franco, A. (2015). Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure. PloS one, 10(11), e0142816. https://doi.org/10.1371/journal.pone.0142816

Moraes, J. P., Tim R. C., & Assis, L. (2020). Considerations about the use of Ozone therapy (O3) in the treatment of Endometriosis. Research, Society and Development, 9(9), e403997616. http://dx.doi.org/10.33448/rsd-v9i9.7616

Moskvin, S. V., Konchugova, T. V. & Khadartsev, A. А. (2017). Voprosy kurortologii, fizioterapii, i lechebnoi fizicheskoi kultury, 94(5), 10–17. https://doi.org/10.1 7116/kurort201794510-17

Oliveira, M. C., Jr, Greiffo, F. R., Rigonato-Oliveira, N. C., Custódio, R. W., Silva, V. R., Damaceno-Rodrigues, N. R., Almeida, F. M., Albertini, R., Lopes-Martins, R. Á., de Oliveira, L. V., de Carvalho, P., Ligeiro de Oliveira, A. P., Leal, E. C., Jr, & Vieira, R. P. (2014). Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. Journal of photochemistry and photobiology. B, Biology, 134, 57–63. https://doi.org/10.1016/j.jphotobiol.2014.03.021

Opal, S M., & Wittebole, X. (2020). Biomarkers of Infection and Sepsis. Critical care clinics, 36(1), 11–22. https://doi.org/10.1016/j.ccc.2019.08.002

Ostronosova N. S. (2006). Terapevticheskii arkhiv, 78(3), 41–44.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/hand le/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rao M. H., Muralidhar, A., & Reddy, A. K. S. (2014) Acute respiratory distress syndrome. J Clin Sci Res 3,114–134

Rello, J., Valenzuela-Sánchez, F., Ruiz-Rodriguez, M., & Moyano, S. (2017). Sepsis: A Review of Advances in Management. Advances in therapy, 34(11), 2393–2411. https://doi.org/10.1007/s12325-017-0622-8

Rigonato-Oliveira, N. C., de Brito, A. A., Vitoretti, L. B., de Cunha Moraes, G., Gonçalves, T., Herculano, K. Z., Alves, C. E., Lino-Dos-Santos-Franco, A., Aimbire, F., Vieira, R. P., & Ligeiro de Oliveira, A. P (2019). Effect of Low-Level Laser Therapy (LLLT) in Pulmonary Inflammation in Asthma Induced by House Dust Mite (HDM): Dosimetry Study. International journal of inflammation, 2019, 3945496. https://doi.org/10.1155/2019/3945496

Rubenfeld, G. D., & Herridge, M. S. (2007). Epidemiology and outcomes of acute lung injury. Chest, 131(2), 554–562. https://doi.org/10.1378/chest.06-1976

Sergio, L., Thomé, A., Trajano, L., Mencalha, A. L., da Fonseca, A. S., & de Paoli, F. (2018). Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 17(7), 975–983. https://doi.org/10.1039/c8pp00109j

Stanski, N. L., & Wong, H. R. (2020). Prognostic and predictive enrichment in sepsis. Nature reviews. Nephrology, 16(1), 20–31. https://doi.org/10.1038/s41581-019-0199-3

Sun, W., Wang, Z. P., Gui, P., Xia, W., Xia, Z., Zhang, X. C., Deng, Q. Z., Xuan, W., Marie, C., Wang, L. L., Wu, Q. P., Wang, T., & Lin, Y. (2014). Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. International immunopharmacology, 23(1), 247–253.

Tuner J., & Hode L. (2002) Laser therapy. Clinical practice and scientific background. BookGra ̈ngesberg, Sweden: Prima Books AB; 2002. ISBN: 91-631-1344-9

Weber, M. H., Fußgänger-May, T. H., & Wolf, T. (2007) The intravenous laser blood irradiation. Introduction of a new therapy. German J Acupunct Relat Tech 12–23.

Published

09/10/2020

How to Cite

DANTAS, E. P. de V. .; MARTIGNAGO, C. C. S. .; TIM, C. R.; BARROS FILHO, R. J. S. .; NEVES, T. M. A. .; ASSIS, L. . Photobiomodulation as an adjunct in the treatment of acute lung injury due to sepsis. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5929109024, 2020. DOI: 10.33448/rsd-v9i10.9024. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9024. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences