Optimization of the extraction process of compounds with antioxidant activity of tommy atkins mango peel
DOI:
https://doi.org/10.33448/rsd-v9i10.9273Keywords:
Tommy Atkins; Antioxidant potential; Sequential experimental planning strategy.Abstract
It is well known that vegetable residues from the food industry can be used as a possible source for the extraction of compounds with antioxidant activity; in the case of mango, approximately 40 to 60% of the total mass of the fruit is considered as residue after processing. This work focused on the optimization of the extraction process of compounds with antioxidant activity from the rind of Tommy Atkins mango. Initially a Fractional Factorial Design 25-1 (FFD) was applied to study the effect of five variables on the extraction process, namely: extraction time (min), percentage of ethanol in aqueous solution (%), pH, dry/solvent mango peel ratio (g/mL) and ultrasound power range (%). The variables extraction time and dry/solvent mango peel ratio were selected, which were evaluated sequentially by the application of a Central Composite Rotatable Design (CCRD) to determine the conditions of maximum extraction of antioxidant compounds by the response surface analysis. The ABTS•+ and Folin-Ciocalteu methods were used for the quantification of the antioxidant activity. The maximum extraction occurred with the use of water, extraction time of 30 min, dry mango peel/solvent ratio of g/mL (1:100), at natural pH of the mixture (pH 4.6 ± 0.20) and sonication amplitude at 50%. It was possible to develop an extraction process of compounds with antioxidant activity from the mango peel, in order to maximize yield through the use of non-toxic solvents and using an agro-industrial residue as raw material.
References
Adegbola, P. I., Adetutu, A., & Olaniyi, T. D. (2020). Antioxidant activity of Amaranthus species from the Amaranthaceae family – A review. South African Journal of Botany, 133, 111–117. https://doi.org/10.1016/j.sajb.2020.07.003
Agatonovic-Kustrin, S., Kustrin, E., & Morton, D. W. (2018). Phenolic acids contribution to antioxidant activities and comparative assessment of phenolic content in mango pulp and peel. South African Journal of Botany, 116, 158–163. https://doi.org/10.1016/j.sajb.2018.03.013
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102
Albuquerque, B. R., Prieto, M. A., Barriro, M. F., Rodrigues, A., Curran, T. P., Barros, L., & Ferreira, I. C. F. R. (2016). Catechin-based extract optimizaiotn obtained from Arbustus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops & Products, xxx(xx), xx. https://doi.org/10.1016/j.indcrop.2016.10.050
Barbulova, A., Colucci, G., & Apone, F. (2015). New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics, 2(2), 82–92. https://doi.org/10.3390/cosmetics2020082
Both, S., Koudous, I., Jenelten, U., & Strube, J. (2014). Model-based equipment-design for plant-based extraction processes - Considering botanic and thermodynamic aspects. Comptes Rendus Chimie, 17(3), 187–196. https://doi.org/10.1016/j.crci.2013.11.004
Caleja, C., Barros, L., Antonio, A. L., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. (2017). A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chemistry, 216, 342–346. https://doi.org/10.1016/j.foodchem.2016.08.075
Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
Fonseca, J. S., & Martins, G. de A. (2011). Curso de Estatística (p. 318). Atlas S.A. https://doi.org/ISBN 978-85-224-1471-0
Gentile, C., Di Gregorio, E., Di Stefano, V., Mannino, G., Perrone, A., Avellone, G., Sortino, G., Inglese, P., & Farina, V. (2019). Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chemistry, 277, 471–479. https://doi.org/10.1016/j.foodchem.2018.10.109
Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60–72. https://doi.org/10.1016/j.bej.2008.10.006
Gómez-Maldonado, D., Lobato-Calleros, C., Aguirre-Mandujano, E., Leyva-Mir, S. G., Robles-Yerena, L., & Vernon-Carter, E. J. (2020). Antifungal activity of mango kernel polyphenols on mango fruit infected by anthracnose. Lwt, 126(December 2019), 109337. https://doi.org/10.1016/j.lwt.2020.109337
Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455–461. https://doi.org/10.1016/j.foodres.2018.12.011
Haaland, P. D. (1989). EXPERIMENTAL DESIGN IN BIOTECHNOLOGY. Drying Technology, 9(3), 817. https://doi.org/10.1080/07373939108916715
Huang, C. Y., Kuo, C. H., Wu, C. H., Kuan, A. W., Guo, H. R., Lin, Y. H., & Wang, P. K. (2018). Free Radical-Scavenging, Anti-Inflammatory, and Antibacterial Activities of Water and Ethanol Extracts Prepared from Compressional-Puffing Pretreated Mango (Mangifera indica L.) Peels. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/1025387
Lavilla, I., & Bendicho, C. (2017). Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds: From Plants to Drug Development (pp. 291–316). https://doi.org/10.1016/B978-0-12-809380-1.00011-5
Lim, K. J. A., Cabajar, A. A., Lobarbio, C. F. Y., Taboada, E. B., & Lacks, D. J. (2019). Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. Journal of Food Science and Technology, 56(5), 2536–2544. https://doi.org/10.1007/s13197-019-03732-7
Luo, J., Fang, Z., & Smith, R. L. (2014). Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 41(1), 56–93. https://doi.org/10.1016/j.pecs.2013.11.001
Moreira-Araújo, R. S. D. R., Barros, N. V. D. A., Porto, R. G. C. L., Brandão, A. de C. A. S., de Lima, A., & Fett, R. (2019). Bioactive compounds and antioxidant activity three fruit species from the Brazilian Cerrado. Revista Brasileira de Fruticultura, 41(3), 0–2. https://doi.org/10.1590/0100-29452019011
Mugwagwa, L. R., & Chimphango, A. F. A. (2019). Box-Behnken design based multi-objective optimisation of sequential extraction of pectin and anthocyanins from mango peels. Carbohydrate Polymers, 219(October 2018), 29–38. https://doi.org/10.1016/j.carbpol.2019.05.015
Nyangena, I. O., Owino, W. O., Imathiu, S., & Ambuko, J. (2019). Effect of pretreatments prior to drying on antioxidant properties of dried mango slices. Scientific African, 6, e00148. https://doi.org/10.1016/j.sciaf.2019.e00148
Pal, C. B. T., & Jadeja, G. C. (2019). Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Science and Technology International. https://doi.org/10.1177/1082013219870010
Poomanee, W., Chaiyana, W., Mueller, M., Viernstein, H., Khunkitti, W., & Leelapornpisid, P. (2018). In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes. Anaerobe, 52, 64–74. https://doi.org/10.1016/j.anaerobe.2018.05.004
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical. 26(98), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rodrigues, M. I., & Iemma, A. F. P. P.-C. (2014). Planejamento de experimentos e otimização de processos. Casa do Espírito Amigo Fraternidade Fé e Amor.
Rodrigues, S., Fernandes, F. A. N., de Brito, E. S., Sousa, A. D., & Narain, N. (2015). Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Industrial Crops and Products, 69, 400–407. https://doi.org/10.1016/j.indcrop.2015.02.059
Santos, L., Carvalho, F. De, Pereira, I., Santos, D., & Pereira, D. (2018). Gestão de resíduos da manga ( Mangifera indica ): análise bibliométrica e sistêmica da literatura. X Simpósio de Engenharia de Produção de Sergipe, 2018, 525–536.
Silva, R. W. V. da, Martins, G. M. G., Nascimento, R. A. do, Viana, A. F. da S., Aguiar, F. S. de, & Silva, B. A. da. (2019). Uso da metodologia de superfície de resposta na otimização da extração de compostos fenólicos da casca dos frutos de Hymenaea courbaril L. (Jatobá). Brazilian Journal of Food Technology, 22, 1–13. https://doi.org/10.1590/1981-6723.08918
Sogi, D. S., Siddiq, M., & Dolan, K. D. (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT - Food Science and Technology, 62(1), 564–568. https://doi.org/10.1016/j.lwt.2014.04.015
Vardanega, R., Santos, D. T., & De Almeida, M. A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 8(16), 88–95. https://doi.org/10.4103/0973-7847.134231
Ye, C. L., & Jiang, C. J. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydrate Polymers, 84(1), 495–502. https://doi.org/10.1016/j.carbpol.2010.12.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Felipe da Silva Veloso ; Eliane Colla; Aziza Kamal Genena
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.