Antimicrobial performance on molds isolated from muffin and antioxidant capacity of raw and roasted coffee oils (Coffea arabica L.)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9285

Keywords:

Bakery; Fungi; Bioactive compounds; Antifungal; Biopreservation.

Abstract

Molds are the main agents that cause the deterioration of the cake, making it inappropriate for human consumption and reducing its commercial and nutritional value. Biopreservation techniques can improve the quality and safety of bakery products by inhibiting the fungi growth. Raw and roasted coffee oils have bioactive, antioxidant and antimicrobial properties, being an alternative to a partial or a total replacement of artificial preservatives. This study aimed to isolate the microorganisms of the muffin cake and evaluate the antifungal properties of these oils against isolated molds and determine the total phenolic compounds and evaluate the antioxidant capacity of the oils by the DPPH and FRAP methods. After isolating the cake”s fungi culture, macroscopic and microscopic evaluations were performed. The molds were characterized as filamentous and belonging to the genus Trichothecium sp., Aspergillus sp. and Penicillium sp. However, the oils did not show antifungal activity relative to the fungi isolated from the cake. Roasted coffee oil had a higher content of total phenolic compounds in relation to crude coffee oil (946.84 and 155.76 mg of gallic acid/100g of extract, respectively). For the antioxidant capacity by the DPPH method there was no difference between the oils and they were lower than in the FRAP method, which was more efficient. The oils tested do not have a potential antifungal effect, but roasted coffee oil has a higher antioxidant capacity than crude coffee oil by the FRAP method, corroborating the total phenolic concentration identified.

References

Affonso, R. C. L., Voytena, A. P. L., Fanan, S., Pitz, H., Coelho, D. S., Horstmann, A. L., Pereira, A., Uarrota, V. G., Hillmann, M. C., Varela, L. A. C., Ribeiro-do-Valle, R. M., & Maraschin, M. (2016). Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxidative Medicine and Cellular Longevity, 2016, 1923754. https://doi.org/10.1155/2016/1923754.

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plants tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875-877. https://doi.org/10.1038/nprot.2007.102.

Almeida, A. A. P., Farah, A., Silva, D. A. M., Nunan, E. A., & Glória, M. B. A. (2006). Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. Journal of Agricultural and Food Chemistry, 54, 8738-8743. https://doi.org/10.1021/jf0617317.

Araújo, G. M. (2014). Avaliação da atividade anti-Helicobacter pylori e citotóxica in vitro de extratos orgânicos obtidos das folhas de Encholirium spectabile e Syzygium cumini. Dissertação, Programa de Pós-Graduação em Ciências Biológicas, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brasil.

Araújo, J. M. A. (2019). Química de Alimentos – Teoria e Prática (7th ed). Viçosa: UFV.

Bagheri, L., Khodaei, N., Salmieri, S., Karboune, S., & Lacroix, M. (2020). Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: In-vitro efficacy and predictive modelling. Microbial Pathogenesis, 2020, 104212. https://doi.org/10.1016/j.micpath.2020.104212.

Balasubramanian, N., Juliet, G. A., Srikalaivani, P., & Lalithakumari, D. (2003). Release and regeneration of protoplasts from the fungus Trichothecium roseum. Canadian Journal of Microbiology, 49, 263-268. https://doi.org/10.1139/w03-034.

Bennion, E. B. B., Bamford, G. S. T. S. T., & Benin. E. B. G. S. (2013). The technology of cake making (6th ed). Bristol: Springer.

Bora, H., Kamle, M., Mahato, D. K., Tiwari, P., & Kumar, P. (2020). Citrus essential oils (CEOs) and their applications in food: An overview. Plants, 9, 357. https://doi.org/10.3390/plants9030357.

Borrelli, R. C., Visconti, A., Mennella, C., Anese, M., & Fogliano, V. (2002). Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry, 50, 6527–6533. https://doi.org/10.1021/jf025686o.

Bound, D. J., Murthy, P. S., & Srinivas, P. (2016). 2,3-Dideoxyglucosides of selected terpene phenols and alcohols as potent antifungal compounds. Food Chemistry, 210, 371-380. https://doi.org/10.1016/j.foodchem.2016.04.127.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, 94, 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

Cornelio-Santiago, H. P., Gonçalves, C. B., Oliveira, N. A., & Oliveira, A. L. (2017). Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. The Journal of Supercritical Fluids, 128, 386-394. https://doi.org/10.1016/j.supflu.2017.05.030.

Dogazaki, C., Shindo, T., Furuhata, K., & Fukuyama, M. (2002). Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage. The Pharmaceutical Society of Japan, 122, 487-494. https://doi.org/10.1248/yakushi.122.487.

Domingues, S. C. O., Matos, D. L., Carvalho, M. A. C., Rabelo, H. O., Yamashita, O. M., & Karsburg, I. V. (2020). Antifungal activity of plant extracts in Rhizoctonia sp. orchid isolated. Research, Society and Development, 9, e392985423. https://doi.org/10.33448/rsd-v9i8.5423

Elizei, V. G., Chalfoun, S. M., Botelho, D. M. S., & Rebelles, P. P. R. (2016). Antifungal activity, in vitro, of the green coffee oil. Arquivos do Instituto Biológico, 83, 1-7. https://doi.org/10.1590/1808-1657001162013.

Farah, A., Paulis, T., Trugo, L. C., & Martin, P. R. (2005). Effect of roasting on the formation of chlorogenic acid lactones in coffee. Journal of Agricultural and Food Chemistry, 53, 1505–1513. https://doi.org/10.1021/jf048701t.

Freiberger, E. B. (2013). Nanocápsulas de poli(L-ácido lático) contendo óleo de café torrado. Dissertação, Programa de Pós-Graduação em Tecnologia de Alimentos, Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Campo Mourão, Brasil.

Gow, N. A., & Yadav, B. (2017). Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology, 163, 1145-1147. https://doi.org/10.1099/mic.0.000499.

Guimarães, D. O., Momesso, L. S., & Pupo, M. (2010). Antibiotics: therapeutic importance and perspectives for the discovery and development of new agents. Química Nova, 33, 667-679. https://doi.org/10.1590/S0100-40422010000300035.

Hayase, F. (1996). Scavenging of active oxygen by melanoidins. In I. Raphael (ed.), The Maillard Reaction Consequences for the Chemical and Life Sciences (pp89-104). Oxford: John Wiley & Sons.

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856. https://doi.org/10.1021/jf030723c.

Jay, J. M. (2005). Microbiologia de alimentos (6th ed). Porto Alegre: Artmed.

Ju, J., Xu, X., Xie, Y., Guo, Y., Cheng, Y., Qian, H., & Yao, W. (2018). Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods. Food Chemistry, 240, 850-855. https://doi.org/10.1016/j.foodchem.2017.07.120.

Kringel. D. H., Silva, W. M. F., Biduski, B., Waller, S. B., Lim, L-T., Dias, A. R. G., & Zavareze, A. R. (2020). Free and encapsulated orange essential oil into a β‐cyclodextrin inclusion complex and zein to delay fungal spoilage in cakes. Journal of Food Processing and Preservation, 44, e14411. https://doi.org/10.1111/jfpp.14411.

Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732. https://doi.org/10.1590/S0101-20612005000400016.

Lima, C. M., Pagnossa, J. P., Lago, R. C., Neves, I. C. O., Oliveira, A. C. S., Verruck, S., Seraglio, S. K. T., Piccoli, R. H., Carvalho, E. E. N., Minim, L. A., Rocha, R. A.., Botrel, D. A., & Pereira, R. G. F. A. (2020). Functional and technological potential of arabica coffee oils. Research, Society and Development, 9, e700997702. https://doi.org/10.33448/rsd-v9i9.7702.

Luginbuehl, L. H., Menard, G. N., Kurup, S., Erp, H. V., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G. E. D., & Eastmond, P. J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178. https://doi.org/10.1126/science.aan0081.

Mehta, A., Bodh, U., & Gupta, R. (2017). Fungal lipases: a review. Journal of Biotech Research, 8, 58-77. Disponível em: http://www.btsjournals.com/assets/2017v8p58-77.pdf. Acesso em Out 24, 2020.

NCCLS. (2015). National Committee for clinical laboratory standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard (10th ed). Wayne: Clinical and Laboratory Standards Institute.

Parry, J., Su, L., Luther, M., Zhou, K., Yurawecz, M. P., Whittaker, P., & Yu, L. (2005). Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, 53, 566-573. https://doi.org/10.1021/jf048615t.

Raba, D. N., Poiana, M-A., Borozan, A. B., Stef, M., Radu, F., & Popa, M-V. (2015). Investigation on crude and high-temperature heated coffee oil by ATR-FTIR spectroscopy along with antioxidant and antimicrobial properties. PloS One, 10, e0138080. https://doi.org/10.1371/journal.pone.0138080.

Ribeiro, M. C., & Stelato, M. M. (2011). Microbiologia prática: aplicações de aprendizagem de microbiologia básica: bactérias, fungos e vírus (2nd ed). São Paulo: Atheneu.

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Fortaleza: Embrapa Agroindústria Tropical-Comunicado Técnico. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT-2010/11964/1/cot-125.pdf. Acesso em Out 24, 2020.

Scherer, R., & Godoy, H. T. (2014). Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidante activity. Revista Brasileira de Plantas Medicinais, 16, 41–46. https://doi.org/10.1590/S1516-05722014000100006.

Shi, X., Dalal, N. S., & Jain, A. C. (1991). Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food and Chemical Toxicology, 29, 1-6. https://doi.org/10.1016/0278-6915(91)90056-D.

Silveira, V. D. (1968). Lições de micologia (3rd ed). Rio de Janeiro: José Olympio.

Souza, S. M. C., Pereira, M. C., Angélico, C. L., & Pimenta, C. J. (2004). Avaliação de óleos essenciais de condimentos sobre o desenvolvimento micelial de fungos associados a produtos de panificação. Ciência e Agrotecnologia, 28, 685-690. https://doi.org/10.1590/S1413-70542004000300027.

Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18, 201-216. https://doi.org/10.1590/S1677-04202006000100014.

Stefanello, N., Spanevello, R. M., Passamonti, S., Porciúncula, L., Bonan, C. D., Olabiyi, A. A., Rocha, J. B. T., Assmann, C. E., Morsch, V. M., & Schetinger, M. R. C. (2019). Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology, 123, 298-313. https://doi.org/10.1016/j.fct.2018.10.005.

Swain, T., & Hillis, W. E. (1959). The phenolics constituents of prumus domestica: the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10, 63-68. https://doi.org/10.1002/jsfa.2740100110.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrnec, D. H. (2006). Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669-675. https://doi.org/10.1016/j.jfca.2006.01.003.

Tortora, G. J., Funke, B. R., & Case, C. L. (2017). Microbiologia (12th ed). Porto Alegre: Artmed.

Vecchia, A. D., & Castilhos-Fortes, R. (2007). Contaminação fúngica em granola comercial. Food Science and Technology, 27, 324-327. https://doi.org/10.1590/S0101-20612007000200020.

Vollmer, W., Blanot, D., & Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 32, 149-167. https://doi.org/10.1111/j.1574-6976.2007.00094.x.

Wong, S. W. D. (2018). Mechanism and theory in food chemistry (2nd ed.). California: Springer Internacional Publishing. https://doi.org/10.1007/978-3-319-50766-8.

Yashin, A., Yashin, Y., Wang, J. Y., & Nemzer, B. (2013). Antioxidant and antiradical activity of coffee. Antioxidants, 2, 230-245. https://doi.org/10.3390/antiox2040230.

Złotek, U. (2018). Antioxidative, potentially anti-inflammatory, and antidiabetic properties, as well as oxidative stability and acceptability, of cakes supplemented with elicited basil. Food Chemistry, 243, 168-174. https://doi.org/10.1016/j.foodchem.2017.09.129.

Published

27/10/2020

How to Cite

SILVA, S. J. M.; SPENCER, P. V. D. .; PINTO, N. A. V. D. .; SCHMIELE, M. Antimicrobial performance on molds isolated from muffin and antioxidant capacity of raw and roasted coffee oils (Coffea arabica L.). Research, Society and Development, [S. l.], v. 9, n. 10, p. e9289109285, 2020. DOI: 10.33448/rsd-v9i10.9285. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9285. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences