Antimicrobial activity and physicochemical performance of a modified endodontic sealer




AH-Plus; Antimicrobial activity; Chlorhexidine; Metronidazole.


Introduction: this study aimed to evaluate the antimicrobial and physicochemical properties of a commercial endodontic sealer modified by the addition of montmorillonite (MMT) nanoparticles loaded with two different drugs: chlorhexidine (CHX) or metronidazole (MET). Methods: 5 wt% MMT/CHX or MMT/MET nanoparticles were added to the sealer AH-Plus. The experimental materials were evaluated for drug release, antimicrobial activity, flow, flexural strength, and flexural modulus. Data were subjected to one-way ANOVA, Kruskal-Wallis, and Mann-Whitney tests. Results: The drug incorporation into MMT particles was 9% and 10% for CHX and MET, respectively. At 20 days after manipulation, 16.5% of the drug was released by the sealer with MMT/MET and 0.4% by MMT/CHX. The addition of both nanoparticles decreased the flow of materials, but they were still in compliance with ISO 6876-2012. The conversion, flexural strength, and flexural modulus of MMT/MET (87%, 37±7 MPa, 2.3 GPa) and MMT/CHX (78%, 29±2 MPa, 2.7 GPa) were similar in both groups but lower than in the control group (100%, 54±7 MPa, 4.0±0.7 GPa). Both experimental materials were able to form an inhibition halo for E. faecalis bacteria (CHX: 4.8±1.4 and MET: 4.0±1.6 mm), whereas the control group did not inhibit the microorganism. Conclusion: both formulations proposed as endodontic sealer presented effective antimicrobial activity and acceptable flow. The addition of MMT/CHX and MMT/MET particles decreased the conversion and mechanical properties, but further studies are required to clarify the clinical relevance of these properties.


AlShwaimi, E., Bogari, D., Ajaj, R., Al-Shahrani, S., Almas, K., & Majeed, A. (2016). In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. J Endod, 42(11), 1588-1597.

Baer, J., & Maki, J. S. (2010). In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin. J Endod, 36(7), 1170-1173.

Bailon-Sanchez, M. E., Baca, P., Ruiz-Linares, M., & Ferrer-Luque, C. M. (2014). Antibacterial and anti-biofilm activity of AH plus with chlorhexidine and cetrimide. J Endod, 40(7), 977-981.

Baldi, J. V., Bernardes, R. A., Duarte, M. A., Ordinola-Zapata, R., Cavenago, B. C., Moraes, J. C., & de Moraes, I. G. (2012). Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube. Int Endod J, 45(10), 915-920.

Ballal, N. V., Sona, M., & Tay, F. R. (2017). Effects of smear layer removal agents on the physical properties and microstructure of mineral trioxide aggregate cement. J Dent, 66, 32-36.

Bouillaguet, S., Shaw, L., Barthelemy, J., Krejci, I., & Wataha, J. C. (2008). Long-term sealing ability of Pulp Canal Sealer, AH-Plus, GuttaFlow and Epiphany. Int Endod J, 41(3),

Cobankara, F. K., Altinoz, H. C., Ergani, O., Kav, K., & Belli, S. (2004). In vitro antibacterial activities of root-canal sealers by using two different methods. J Endod, 30(1), 57-60.

Collares, F. M., Leitune, V. C. B., Portella, F. F., Santos, P. D., Balbinot, G. S., Dos Santos, L. A., Samuel, S. M. W. (2018). Methacrylate-based root canal sealer containing chlorexidine and alpha-tricalcium phosphate. J Biomed Mater Res B Appl Biomater, 106(4), 1439-1443.

de Souza, M. O., Branco Leitune, V. C., Bohn, P. V., Werner Samuel, S. M., & Collares, F. M. (2015). Physical-mechanical properties of Bis-EMA based root canal sealer with different fillers addition. J Conserv Dent, 18(3), 227-231.

Dickens, S. H., Stansbury, J. W., Choi, K. M., & Floyd, C. J. E. (2003). Photopolymerization Kinetics of Methacrylate Dental Resins. Macromolecules, 36, 6046-6053.

Elbourne, A., Crawford, R. J., & Ivanova, E. P. (2017). Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci, 508, 603-616.

Ercan, E., Dalli, M., Yavuz, İ., & Özekinci, T. (2006). Investigation of Microorganisms in Infected Dental Root Canals. Biotechnology & Biotechnological Equipment, 20(2), 166-172.

Ghivari, S. B., Bhattacharya, H., Bhat, K. G., & Pujar, M. A. (2017). Antimicrobial activity of root canal irrigants against biofilm forming pathogens- An in vitro study. J Conserv Dent, 20(3), 147-151.

Grande, N. M., Plotino, G., Lavorgna, L., Ioppolo, P., Bedini, R., Pameijer, C. H., & Somma, F. (2007). Influence of different root canal-filling materials on the mechanical properties of root canal dentin. J Endod, 33(7), 859-863.

Hasan, J., Crawford, R. J., & Ivanova, E. P. (2013). Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol, 31(5), 295-304.

Hoelscher, A. A., Bahcall, J. K., & Maki, J. S. (2006). In vitro evaluation of the antimicrobial effects of a root canal sealer-antibiotic combination against Enterococcus faecalis. J Endod, 32(2), 145-147.

Kapralos, V., Koutroulis, A., Orstavik, D., Sunde, P. T., & Rukke, H. V. (2018). Antibacterial Activity of Endodontic Sealers against Planktonic Bacteria and Bacteria in Biofilms. J Endod, 44(1), 149-154.

Kim, H. R., Kim, Y. K., & Kwon, T. Y. (2017). Post space preparation timing of root canals sealed with AH Plus sealer. Restor Dent Endod, 42(1), 27-33.

Kim, Y. K., Grandini, S., Ames, J. M., Gu, L. S., Kim, S. K., Pashley, D. H., . . . Tay, F. R. (2010). Critical review on methacrylate resin-based root canal sealers. J Endod, 36(3), 383-399.

Lacey, S., Pitt Ford, T. R., Yuan, X. F., Sherriff, M., & Watson, T. (2006). The effect of temperature on viscosity of root canal sealers. Int Endod J, 39(11), 860-866.

Lee, B. S., Wang, C. Y., Fang, Y. Y., Hsieh, K. H., & Lin, C. P. (2011). A novel urethane acrylate-based root canal sealer with improved degree of conversion, cytotoxicity, bond strengths, solubility, and dimensional stability. J Endod, 37(2), 246-249.

Mohammadi, Z., Jafarzadeh, H., & Shalavi, S. (2014). Antimicrobial efficacy of chlorhexidine as a root canal irrigant: a literature review. J Oral Sci, 56(2), 99-103.

Morgental, R. D., Vier-Pelisser, F. V., Oliveira, S. D., Antunes, F. C., Cogo, D. M., & Kopper, P. M. (2011). Antibacterial activity of two MTA-based root canal sealers. Int Endod J, 44(12), 1128-1133.

Nambu, T. (1984). Study on antibacterial root canal sealer containing chlorhexidine dihydrochloride. II. Investigation of antibacterial activity and follow-up study on clinical usage. Dent Mater J, 3(2), 288-311.

Pawinska, M., Szczurko, G., Kierklo, A., & Sidun, J. (2017). A laboratory study evaluating the pH of various modern root canal filling materials. Adv Clin Exp Med, 26(3), 387-392.

Pinheiro, S. L., da Silva, C. C., da Silva, L. A., Cicotti, M. P., Bueno, C., Fontana, C. E., de Campos, F. U. (2018). Antimicrobial efficacy of 2.5% sodium hypochlorite, 2% chlorhexidine, and ozonated water as irrigants in mesiobuccal root canals with severe curvature of mandibular molars. Eur J Dent, 12(1), 94-99.

Prullage, R. K., Urban, K., Schafer, E., & Dammaschke, T. (2016). Material Properties of a Tricalcium Silicate-containing, a Mineral Trioxide Aggregate-containing, and an Epoxy Resin-based Root Canal Sealer. J Endod, 42(12), 1784-1788.

Schwartz, R. S. (2006). Adhesive dentistry and endodontics. Part 2: bonding in the root canal system-the promise and the problems: a review. J Endod, 32(12), 1125-1134.

Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 23(8), 1819-1829.

Siqueira, J. F., Jr., Favieri, A., Gahyva, S. M., Moraes, S. R., Lima, K. C., & Lopes, H. P. (2000). Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod, 26(5), 274-277.

Stuart, C. H., Schwartz, S. A., Beeson, T. J., & Owatz, C. B. (2006). Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod, 32(2), 93-98.

Thosar, N. R., Chandak, M., Bhat, M., & Basak, S. (2018). Evaluation of Antimicrobial Activity of Two Endodontic Sealers: Zinc Oxide with Thyme Oil and Zinc Oxide Eugenol against Root Canal Microorganisms- An in vitro Study. Int J Clin Pediatr Dent, 11(2), 79-82.

Versiani, M. A., Carvalho-Junior, J. R., Padilha, M. I., Lacey, S., Pascon, E. A., & Sousa-Neto, M. D. (2006). A comparative study of physicochemical properties of AH Plus and Epiphany root canal sealants. Int Endod J, 39(6), 464-471.

Wainstein, M., Morgental, R. D., Waltrick, S. B., Oliveira, S. D., Vier-Pelisser, F. V., Figueiredo, J. A., Scarparo, R. K. (2016). In vitro antibacterial activity of a silicone-based endodontic sealer and two conventional sealers. Braz Oral Res, 30, e18.

Webster, D. M., Sundaram, P., & Byrne, M. E. (2013). Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm, 84(1), 1-20.

Wu, Y., Zhou, N., Li, W., Gu, H., Fan, Y., & Yuan, J. (2013). Long-term and controlled release of chlorhexidine-copper(II) from organically modified montmorillonite (OMMT) nanocomposites. Mater Sci Eng C Mater Biol Appl, 33(2), 752-757.

Zhang, C., Du, J., & Peng, Z. (2015). Correlation between Enterococcus faecalis and Persistent Intraradicular Infection Compared with Primary Intraradicular Infection: A Systematic Review. J Endod, 41(8), 1207-1213.

Zhang, H., Shen, Y., Ruse, N. D., & Haapasalo, M. (2009). Antibacterial Activity of Endodontic Sealers by Modified Direct Contact Test Against Enterococcus faecalis. Journal of Endodontics, 35(7), 1051-1055.




How to Cite

Gonçalves, F., Campos, L. M. de P. ., Sanches, L. K. F. ., Silva, L. T. S. ., Santos, T. M. R. dos ., Varca, G. H. C. ., Lopes, D. P. ., Cogo-Muller, K., Parra, D. F. ., Braga, R. R. ., Santos, M. dos, & Boaro, L. C. C. . (2020). Antimicrobial activity and physicochemical performance of a modified endodontic sealer. Research, Society and Development, 9(11), e069119401.



Health Sciences