Evaluation of NiTi wire roughness when exposed to fluoridated solution

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9480

Keywords:

Orthodontic wires; Saliva; Fluorine.

Abstract

There is a concern about the nickel-titanium (NiTi-)-based wires due their content and potential release of nickel, mainly when they are exposed to fluoride. Therefore, the aim of this study was to evaluate the roughness of NiTi-based wires used in orthodontic treatment when exposed to fluoridated solution. The wires were divided in groups according their composition (Flexy NiTi Super Elastic, Flexy NiTi Thermal 35°, Flexy NiTi Copper e Flexy Blue-Ti), time (0 day – T0, 7 days – T1, 14 days – T2, and 28 days – T3) and immersion (artificial saliva solution or artificial saliva containing fluoride). To the roughness assay, straight sections (24 mm) of each wire were used, under constant speed of 0.25 mm/s, measurement length of 2.5 mm and cut-off value of 0.25 mm. The value of surface roughness was obtained by the average of three measurements of each wire. To check data normality the Kolmogorov-Smirnov test was applied, followed by analysis of variance to compare the difference between time and Student t-test to compare the difference of time to each group and intergroup. There was no statistically significant difference of the roughness intra- and intergroup between different composition, time nor immersion. The use of 0.2% fluoride once a week did not cause significant changes in the surface characteristics of studied wires.

References

Albuquerque, C. G. D., Correr, A. B., Venezian, G. C., Santamaria Jr, M., Tubel, C. A., & Vedovello, S. A. S. (2017). Deflection and flexural strength effects on the roughness of aesthetic-coated orthodontic wires. Brazilian Dental Journal, 28(1), 40-45.

Bandeira, A. M. B., dos Santos, M. P. A., Pulitini, G., Elias, C. N., & da Costa, M. F. (2011). Influence of thermal or chemical degradation on the frictional force of an experimental coated NiTi wire. The Angle Orthodontist, 81(3), 484-489.

Bogdanski, D., Köller, M., Müller, D., Muhr, G., Bram, M., Buchkremer, H. P., & Epple, M. (2002). Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials, 23(23), 4549-4555.

Cioffi, I., Piccolo, A., Tagliaferri, R., Paduano, S., Galeotti, A., & Martina, R. (2012). Pain perception following first orthodontic archwire placement-Thermoelastic vs superelastic alloys: A randomized controlled trial. Quintessence international, 43(1), 61–69.

Fidalgo, T. K. D. S., Pithon, M. M., Maciel, J. V. B., & Bolognese, A. M. (2011). Friction between different wire bracket combinations in artificial saliva: an in vitro evaluation. Journal of Applied Oral Science, 19(1), 57-62.

Huang, H. H. (2002). Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials, 23(1), 59-63.

Huang, H. H. (2003). Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. Journal of Biomedical Materials Research Part A, 66(4), 829-839.

Huang, H. H. (2005). Variation in corrosion resistance of nickel-titanium wires from different manufacturers. The Angle Orthodontist, 75(4), 661-665.

Kao, C. T., & Huang, T. H. (2010). Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions. The European Journal of Orthodontics, 32(5), 555-560.

Kim, M. J., Lim, B. S., Chang, W. G., Lee, Y. K., Rhee, S. H., & Yang, H. C. (2005). Phosphoric acid incorporated with acidulated phosphate fluoride gel etchant effects on bracket bonding. The Angle Orthodontist, 75(4), 678-684.

Kwon, Y. H., Cheon, Y. D., Seol, H. J., Lee, J. H., & Kim, H. I. (2004). Changes on NiTi orthodontic wired due to acidic fluoride solution. Dental Materials Journal, 23(4), 557-565.

Kwon, Y. H., Cho, H. S., Noh, D. J., Kim, H. I., & Kim, K. H. (2005). Evaluation of the effect of fluoride‐containing acetic acid on NiTi wires. Journal of Biomedical Materials Research Part B: Applied Biomaterials 72(1), 102-108.

Kwon, Y. H., Jang, C. M., Jang, J. H., Park, J. H., Kim, T. H., & Kim, H. I. (2008). Effect of fluoride released from fluoride-containing dental restoratives on NiTi orthodontic wires. Dental Materials Journal, 27(1), 133-138.

Lausmaa, J., Kasemo, B., & Hansson, S. (1985). Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination. Biomaterials, 6(1), 23-27.

Lin, H., Bowers, B., Wolan, J. T., Cai, Z., & Bumgardner, J. D. (2008). Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing. Dental Materials, 24(3), 378-385.

Lin, J., Han, S., Zhu, J., Wang, X., Chen, Y., Vollrath, O., & Mehl, C. (2012). Influence of fluoride-containing acidic artificial saliva on the mechanical properties of Nickel-Titanium orthodontics wires. Indian Journal of Dental Research, 23(5), 591-595.

Locci, P., Lilli, C., Marinucci, L., Calvitti, M., Belcastro, S., Bellocchio, S., & Becchetti, E. (2000). In vitro cytotoxic effects of orthodontic appliances. Journal of Biomedical Materials Research, 53(5), 560-567.

Nakagawa, M., Matsuya, S., & Udoh, K. (2002). Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Materials Journal, 21(2), 83-92.

Nakagawa, M., Matsuya, S., Shiraishi, T., & Ohta, M. (1999). Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. Journal of Dental Research, 78(9), 1568-1572.

Perinetti, G., Contardo, L., Ceschi, M., Antoniolli, F., Franchi, L., Baccetti, T., & Di Lenarda, R. (2012). Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. The European Journal of Orthodontics, 34(1), 1-9.

Prososki, R. R., Bagby, M. D., & Erickson, L. C. (1991). Static frictional force and surface roughness of nickel-titanium arch wires. American Journal of Orthodontics and Dentofacial Orthopedics, 100(4), 341-348.

Schiff, N., Grosgogeat, B., Lissac, M., & Dalard, F. (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995-2002.

Schmit, J. L., Staley, R. N., Wefel, J. S., Kanellis, M., Jakobsen, J. R., & Keenan, P. J. (2002). Effect of fluoride varnish on demineralization adjacent to brackets bonded with RMGI cement. American Journal of Orthodontics and Dentofacial Orthopedics, 122(2), 125-134.

Tecco, S., Tetè, S., & Festa, F. (2009). Friction between archwires of different sizes, cross-section and alloy and brackets ligated with low-friction or conventional ligatures. The Angle Orthodontist, 79(1), 111-116.

Walker, M. P., White, R. J., & Kula, K. S. (2005). Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 127(6), 662-669.

Watanabe, I., & Watanabe, E. (2003). Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 123(6), 653-656.

Published

04/11/2020

How to Cite

Santos, L. L. dos ., Paloco, E. A. C., Berger, S. B., Dias, F. A., Giuliangeli, D. F., Santos, J. G. M. dos ., Pizzurno, L. G. D. A., & Guiraldo, R. D. (2020). Evaluation of NiTi wire roughness when exposed to fluoridated solution. Research, Society and Development, 9(11), e559119480. https://doi.org/10.33448/rsd-v9i11.9480

Issue

Section

Health Sciences