Efectividad de un dispositivo de seguimiento solar a doble eje en clima tropical
DOI:
https://doi.org/10.33448/rsd-v9i11.9637Palabras clave:
Energía renovable; Índice de lluvia; Irradiación; Energía solar; Sistema de seguimiento solar.Resumen
La demanda de energía y la presión para reducir los impactos ambientales están aumentando en los países en desarrollo, especialmente en las áreas agrícolas. La generación de electricidad a partir de paneles solares fotovoltaicos puede ser ventajosa económica y ambientalmente como fuente de energía renovable, además de la capacidad de llegar a consumidores en ubicaciones remotas. El presente estudio tuvo como objetivo evaluar el rendimiento de un sistema fotovoltaico equipado con un dispositivo de seguimiento solar en comparación con el panel fijo. Se han implementado dos sistemas fotovoltaicos, uno de los cuales usaba un módulo de rotación de dos ejes y el otro era fijo (control), para capturar energía solar durante todo el día en una región tropical de Brasil. Los datos de energía solar se obtuvieron de los dos paneles fotovoltaicos, con registro constante durante seis meses, lo que demostró una característica climática de altos niveles de nubosidad y precipitación para el período. La puesta en marcha de los paneles fotovoltaicos analizados se realizó en días claros. Los resultados de potencia indicaron que el sistema de seguimiento con dos ejes fue efectivo durante la prueba, mostrando un aumento del 26% en comparación con el panel fijo. Se confirmó que, cuando la nubosidad y el índice de lluvia son muy altas, es posible que el sistema de seguimiento solar no sea tan eficiente como se predijo. La lluvia y la nubosidad son factores esenciales para determinar la viabilidad de utilizar un dispositivo de rastreo en las regiones tropicales.
Citas
Abdallah, S. (2004). The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics. Energy Conversion and Management, 45, 1671–1679. https://doi.org/10.1016/j.enconman.2003.10.006
ANEEL - Agência Nacional de Energia Elétrica. (2019). Micro e minigeração distribuída: Sistema de compensação de Energia elétrica. (2a ed.), Brasilia, DF. Agência Nacional de Energia Elétrica, 2016. 32p. Retrieved from http://www2.aneel.gov.br/biblioteca/do wnloads/livros/caderno-tematico-microeminigeracao.pdf.
Batayneh, W., Bataineh, A., Soliman, I., Saleh Abed Hafees, S. A. (2019). Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction, 98: 102-109. https://doi.org/10.101 6/j.autcon.2018.11.011
Bentaher, H., Kaich, H., Ayadi, N., Ben Hmouda, M., Maalej, A., & Lemmer, U. (2014). A simple tracking system to monitor solar PV panels. Energy Conversion and Management, 78, 872-875. https://doi.org/10.1016/j.enconman.2013.09.042.
Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable & Sustainable Energy Reviews, 15, 4470-4482. https://doi.org/10.1016/j.rser.2011.07.104
Carvalho, D. R., Lacerda Filho, A. F., Resende, R. C., Possi, M. A., & Kruckeberg, J. P. (2013) An economical, two axes solar tracking system for implementation in Brazil. Applied Engineering in Agriculture, 29, 123-128. https://doi.org/10.13031/2013.42525.
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Ki-Hyun Kim, K-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900. https://doi.org/10.1016/j.rser.2017.09.094
Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: A review. Renewable & Sustainable Energy Reviews, 62, 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022
Kelly, N. A., & Gibson, T. L. (2009). Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Solar Energy, 83, 2092-2102. https://doi.org/10.1016/j.solener.2009.08.009.
Koussa, M., Cheknane, A., Hadji, S., Haddadi, M., & Noureddine, S. (2001). Measured and modeled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. Applied Energy, 88, 1756–1771. https://doi.org/10.1016/j.apenergy.2010.12.002.
Lazaroiu, G. C., Longo, M., Roscia, M., & Pagano, M. (2015). Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption. Energy Conversion and Management, 92,143-148. https://doi.org/10.1016/j.enconman.2014.12.046.
Lowry, R. Vassar Stats. Retrieved from < http://vassarstats.net/>.
Maghami, M. R., Hashim, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Energy Conversion and Management, 59, 1307-1316. https://doi.org/10.1016/j.rser.2016.01.044.
Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2009). A review of principle and sun-tracking methods for maximizing solar systems output. Renewable & Sustainable Energy Reviews, 13, 1800–1818. https://doi.org/10.1016/j.rser.2009.01.022
Panwar, N., Kaushik, S., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable & Sustainable Energy Reviews, 15, 1513–24. https://doi.org/10.1016/j.rser.2010.11.037
Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 15, 1625-1636. https://doi.org/10.10 16/j.rser.2010.11.032
Pereira, E. B., Martins, F. R., Gonçalves, A. R., Costa, R. S., de Lima, F. J. L., Rüther, R., de Abreu, S. L., Tiepolo, G. M., Pereira, S. V., & de Souza, J. G. Brazilian Atlas of Solar Energy. (2a ed.), São José dos Campos: INPE. 2017. Retrieved from <http://ftp.cptec.inpe.br/labren/publ/livros/brazil_solar_atlas_R1.pdf>.
Poulek, V., & Libra, M. (2000). A very simple solar tracker for space and terrestrial applications. Solar Energy Materials & Solar Cells, 60, 99-103. https://doi.org/10.1016/S0927-0248(99)00071-9
Rambhowan, Y., & Oree, V. (2014). Improving the dual-axis solar tracking system efficiency via drive power consumption optimization. Applied Solar Energy, 50, 74-80. https://doi.org/10.3103/S0003701X1402011X
Sampaio, P. G. V., & Aguirre González, M. O. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 4, 590-601. https://doi.org/10.1016/j.rser.2017.02.081
Serhan, M., & El-Chaar, L. Two axis sun tracking system: comparison with a fixed system. In: International conference on renewable energies and power quality, 2010, Granada, Spain, 23–25 March 2010. Proceedings… Granada: University of Granada, 2010. Retrieved from <http://www.icrepq.com/icrepq%2710/227-Serhan.pdf>.
Sharaf Eldin, S. A., Abd-Elhady, M. S., & Kandil, H. A. (2016). Feasibility of solar tracking systems for PV panels in hot and cold regions. Renewable Energy, 85, 228-233. https://doi.org/10.1016/j.renene.2015.06.051.
Singh, P., Shrivastava, V., & Kumar, A. (2018). Recent developments in greenhouse solar drying: A review. Renewable & Sustainable Energy Reviews, 82, 3250-3262. https://doi.org/10.1016/j.rser.2017.10.020.
Tharamuttam, J. K., & Ng, A. K. (2017). Design and Development of an Automatic Solar Tracker. Energy Procedia, 143, 629-634. https://doi.org/10.1016/j.egypro.2017.12.738
Viana, T. S., Rüther, S., Martins, F. R., & Pereira, E. B. (2011). Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation. Solar Energy, 85, 486-495. https://doi.org/10.1016/j.solener.2010.12.015
Yao, Y., Hu, Y., Gao, S., Yang, G., & Du, J. (2014). A multipurpose dual-axis solar tracker with two tracking strategies. Renewable Energy, 72, 88-98. https://doi.org/10. 1016/j.renene.2014.07.002.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Filipe de Souza Lins; Vinicius A. da Silva; Irenilza de Alencar Nääs; Nilsa Duarte da Silva Lima; Mário César da Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.