Remote organs respond differently to curcumin treatment after intestinal ischemia/reperfusion injury

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9660

Keywords:

Oxidative stress; Inflammation; Superior Mesenteric Artery.

Abstract

We aimed investigate the effects of 45 min of ischemia followed by 72 h of intestinal reperfusion (IR) in the ileum, liver, lungs, and kidneys in Wistar rats and the responses of these organs to curcumin treatment. Ischemia was induced by occluding the superior mesenteric artery. Rats were treated orally with 40 mg/kg curcumin. We analyzed oxidative stress and inflammation in the ileum, liver, lungs, and kidneys. Intestinal IR led to a reduction of reduced glutathione levels in the intestine, lungs, and kidneys and increased lipid hydroperoxide levels in all organs. An increase in the enzymatic activity of catalase was observed in all organs, and an increase in superoxide dismutase activity was observed in the ileum and lungs. Glutathione s-transferase levels increased only in the kidneys. Myeloperoxidase increased in all four organs, and n-acetyl-glycosaminidase increased only in the ileum and lungs. Curcumin prevented all of the changes in the ileum and liver. In the lungs, curcumin had no effect on n-acetyl-glycosaminidase. Curcumin did not prevent the changes in reduced glutathione, lipid hydroperoxides, or myeloperoxidase in the kidneys. Intestinal IR caused oxidative stress and inflammation in the ileum, lungs, and kidneys and to a lesser degree in the liver. Because of its systemic distribution, curcumin prevented changes mainly in the ileum, lungs, and liver and to a lesser degree in the kidneys.

References

Acosta, S., & Björck, M. (2003). Acute thrombo-embolic occlusion of the superior mesenteric artery: a prospective study in a well defined population. Eur J Vasc Endovasc Surg, 26(2), 179–183. https://www.ncbi.nlm.nih.gov/pubmed/12917835

Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105, 121–126. https://www.ncbi.nlm.nih.gov/pubmed/6727660

Akinrinmade, J. F., Akinrinde, S. A., Odejobi, A., & Oyagbemi, A. A. (2015). Evidence of attenuation of intestinal ischemia-reperfusion injury following pre-treatment with methanolic extracts from Chromolena odorata in rats. J Complement Integr Med, 12(1), 23–32. https://doi.org/10.1515/jcim-2014-0034

Aldemir, D., Tufan, H., Tecder-Unal, M., Türkoğlu, S., Oğüs, E., Kayhan, Z., & Haberal, M. (2003). Age-related alterations of oxidative stress and arginase activity as a response to intestinal ischemia-reperfusion in rat kidney and liver. Transplant Proc, 35(7), 2811–2815. https://www.ncbi.nlm.nih.gov/pubmed/14612127

Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004

Barut, F., Ozacmak, V. H., Turan, I., Sayan-Ozacmak, H., & Aktunc, E. (2016). Reduction of Acute Lung Injury by Administration of Spironolactone After Intestinal Ischemia and Reperfusion in Rats. Clin Invest Med, 39(1), E15-24. https://www.ncbi.nlm.nih.gov/pubmed/26833169

Borges, S. C., Ferreira, P. E. B., da Silva, L. M., de Paula Werner, M. F., Irache, J. M., Cavalcanti, O. A., & Buttow, N. C. (2018). Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion. Toxicology, 396–397. https://doi.org/10.1016/j.tox.2018.02.002

Börjesson, A., Wang, X., Sun, Z., Wallén, R., Deng, X., Johansson, E., & Andersson, R. (2000). Effects of N-acetylcysteine on pulmonary macrophage activity after intestinal ischemia and reperfusion in rats / with invited commentaries. Dig Surg, 17(4), 379. https://doi.org/10.1159/000018882

Chen, G. Y., & Nuñez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 10(12), 826–837. https://doi.org/10.1038/nri2873

Chung, H. Y., Baek, B. S., Song, S. H., Kim, M. S., Huh, J. I., Shim, K. H., Kim, K. W., & Lee, K. H. (1997). Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha), 20(3), 127–140. https://doi.org/10.1007/s11357-997-0012-2

Cuzzocrea, S., Chatterjee, P. K., Mazzon, E., Dugo, L., De Sarro, A., de Loo, F. A., Caputi, A. P., & Thiemermann, C. (2002). Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock, 18(2), 169–176. https://www.ncbi.nlm.nih.gov/pubmed/12166782

Demir, M., Amanvermez, R., Kamalı Polat, A., Karabıçak, I., Cınar, H., Kesicioğlu, T., & Polat, C. (2014). The effect of silymarin on mesenteric ischemia-reperfusion injury. Med Princ Pract, 23(2), 140–144. https://doi.org/10.1159/000356860

Faith, M., Sukumaran, A., Pulimood, A. B., & Jacob, M. (2008). How reliable an indicator of inflammation is myeloperoxidase activity? Clin Chim Acta, 396(1–2), 23–25. https://doi.org/10.1016/j.cca.2008.06.016

Fan, Z., Jing, H., Yao, J., Li, Y., Hu, X., Shao, H., Shen, G., Pan, J., Luo, F., & Tian, X. (2014). The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid Med Cell Longev, 2014, 191624. https://doi.org/10.1155/2014/191624

Fayez, A. M., Awad, A. S., El-Naa, M. M., Kenawy, S. A., & El-Sayed, M. E. (2014). Beneficial effects of thymoquinone and omega-3 on intestinal ischemia/reperfusion-induced renal dysfunction in rats. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 171–177. https://doi.org/10.1016/J.BFOPCU.2014.05.003

Grootjans, J., Lenaerts, K., Derikx, J. P., Matthijsen, R. A., de Bruïne, A. P., van Bijnen, A. A., van Dam, R. M., Dejong, C. H., & Buurman, W. A. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol, 176(5), 2283–2291. https://doi.org/10.2353/ajpath.2010.091069

Guzel, A., Kanter, M., Yucel, A. F., & Erboga, M. (2013). Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicol Ind Health, 29(7), 633–642. https://doi.org/10.1177/0748233711430984

Hakgüder, G., Akgür, F. M., Ateş, O., Olguner, M., Aktuğ, T., & Ozer, E. (2002). Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition. Dig Dis Sci, 47(6), 1279–1283. https://www.ncbi.nlm.nih.gov/pubmed/12064802

Horie, Y., Wolf, R., Miyasaka, M., Anderson, D. C., & Granger, D. N. (1996). Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology, 111(3), 666–673. https://www.ncbi.nlm.nih.gov/pubmed/8780571

Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med, 17(7), 796–808. https://doi.org/10.1038/nm.2399

Jankun, J., Wyganowska-Świątkowska, M., Dettlaff, K., Jelińska, A., Surdacka, A., Wątróbska-Świetlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int J Mol Med, 37(5), 1151–1158. https://doi.org/10.3892/ijmm.2016.2524

Jiang, Z. Y., Woollard, A. C., & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26(10), 853–856. https://www.ncbi.nlm.nih.gov/pubmed/1795606

Jones, D. P. (2002). Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol, 348, 93–112. https://www.ncbi.nlm.nih.gov/pubmed/11885298

Kiliç, K., Hanci, V., Selek, S., Sözmen, M., Kiliç, N., Citil, M., Yurtlu, D. A., & Yurtlu, B. S. (2012). The effects of dexmedetomidine on mesenteric arterial occlusion-associated gut ischemia and reperfusion-induced gut and kidney injury in rabbits. J Surg Res, 178(1), 223–232. https://doi.org/10.1016/j.jss.2012.03.073

Lamaita, R. M., Pontes, A., Belo, A. V, Caetano, J. P., Andrade, S. P., Cândido, E. B., Carneiro, M. M., & Silva-Filho, A. L. (2012). Evaluation of N-acetilglucosaminidase and myeloperoxidase activity in patients with endometriosis-related infertility undergoing intracytoplasmic sperm injection. J Obstet Gynaecol Res, 38(5), 810–816. https://doi.org/10.1111/j.1447-0756.2011.01805.x

Lee, M. C., Velayutham, M., Komatsu, T., Hille, R., & Zweier, J. L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry, 53(41), 6615–6623. https://doi.org/10.1021/bi500582r

Lin, J. K. (2007). Molecular targets of curcumin. Adv Exp Med Biol, 595, 227–243. https://doi.org/10.1007/978-0-387-46401-5_10

Lindeström, L. M., & Ekblad, E. (2004). Structural and neuronal changes in rat ileum after ischemia with reperfusion. Dig Dis Sci, 49(7–8), 1212–1222. http://www.ncbi.nlm.nih.gov/pubmed/15387349

Mallick, I. H., Yang, W., Winslet, M. C., & Seifalian, A. M. (2004). Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci, 49(9), 1359–1377. http://www.ncbi.nlm.nih.gov/pubmed/15481305

Marczylo, T. H., Steward, W. P., & Gescher, A. J. (2009). Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem, 57(3), 797–803. https://doi.org/10.1021/jf803038f

Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47(3), 469–474. https://www.ncbi.nlm.nih.gov/pubmed/4215654

McCord, J. M. (1985). Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med, 312(3), 159–163. https://doi.org/10.1056/NEJM198501173120305

Montalto, M. C., Hart, M. L., Jordan, J. E., Wada, K., & Stahl, G. L. (2003). Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol, 285(1), G197-206. https://doi.org/10.1152/ajpgi.00029.2003

Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287–1312. https://www.ncbi.nlm.nih.gov/pubmed/11728801

Onder, A., Kapan, M., Gümüş, M., Yüksel, H., Böyük, A., Alp, H., Başarili, M. K., & Firat, U. (2012). The protective effects of curcumin on intestine and remote organs against mesenteric ischemia/reperfusion injury. Turk J Gastroenterol, 23(2), 141–147. https://www.ncbi.nlm.nih.gov/pubmed/22706742

Parks, D. A., & Granger, D. N. (1988). Ischemia-reperfusion injury: a radical view. Hepatology, 8(3), 680–682. https://www.ncbi.nlm.nih.gov/pubmed/3286463

Paterno, F., & Longo, W. E. (2008). The etiology and pathogenesis of vascular disorders of the intestine. Radiol Clin North Am, 46(5), 877–885, v. https://doi.org/10.1016/j.rcl.2008.06.005

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Saidi, S. A., Ncir, M., Chaaben, R., Jamoussi, K., van Pelt, J., & Elfeki, A. (2017). Liver injury following small intestinal ischemia reperfusion in rats is attenuated by Pistacia lentiscus oil: antioxidant and anti-inflammatory effects. Arch Physiol Biochem, 123(4), 199–205. https://doi.org/10.1080/13813455.2017.1302961

Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 64(4), 353–356. https://doi.org/10.1055/s-2006-957450

Stallion, A., Kou, T. D., Miller, K. A., Dahms, B. B., Dudgeon, D. L., & Levine, A. D. (2002). IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res, 105(2), 145–152. https://www.ncbi.nlm.nih.gov/pubmed/12121701

Stoney, R. J., & Cunningham, C. G. (1993). Acute mesenteric ischemia. Surgery, 114(3), 489–490. http://www.ncbi.nlm.nih.gov/pubmed/8367801

Thomas, C. E., Morehouse, L. A., & Aust, S. D. (1985). Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem, 260(6), 3275–3280. https://www.ncbi.nlm.nih.gov/pubmed/2982854

Tiwari, V., Kuhad, A., & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother Res, 25(10), 1527–1536. https://doi.org/10.1002/ptr.3440

Turan, I., Ozacmak, H. S., Ozacmak, V. H., Barut, F., & Araslı, M. (2017). Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci, 189, 23–28. https://doi.org/10.1016/j.lfs.2017.08.032

Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J. R., & Das, P. K. (2003). Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol, 139(2), 209–218. https://doi.org/10.1038/sj.bjp.0705241

Vinardi, S., Pierro, A., Parkinson, E. J., Vejchapipat, P., Stefanutti, G., Spitz, L., & Eaton, S. (2003). Hypothermia throughout intestinal ischaemia-reperfusion injury attenuates lung neutrophil infiltration. J Pediatr Surg, 38(1), 88–91. https://doi.org/10.1053/jpsu.2003.50017

Wang, J., Yu, X., Zhang, L., Wang, L., Peng, Z., & Chen, Y. (2018). The pharmacokinetics and tissue distribution of curcumin and its metabolites in mice. Biomed Chromatogr, e4267. https://doi.org/10.1002/bmc.4267

Warholm, M., Guthenberg, C., von Bahr, C., & Mannervik, B. (1985). Glutathione transferases from human liver. Methods Enzymol, 113, 499–504. https://www.ncbi.nlm.nih.gov/pubmed/3003505

Xu, Y., Hu, N., Jiang, W., Yuan, H. F., & Zheng, D. H. (2016). Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells. Oncotarget, 7(52), 87390–87401. https://doi.org/10.18632/oncotarget.13626

Downloads

Published

08/11/2020

How to Cite

BRINGHENTTI, E. .; BORGES, S. C.; NEVES, C. Q. .; BUTTOW, N. C. . Remote organs respond differently to curcumin treatment after intestinal ischemia/reperfusion injury. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1519119660, 2020. DOI: 10.33448/rsd-v9i11.9660. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9660. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences