Biodegradation of atrazine, glyphosate and pendimetaline employing fungal consortia

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9679

Keywords:

Degradation; Pesticides; Fungi; Agricultural soils.

Abstract

The objective of the present study was to evaluate the bioremediation of soils artificially contaminated with atrazine, glyphosate and pendimethalin by fungal consortia in biodegradation processes in microcosms. Biodegradation was evaluated from microbial respiration over a period of 15 days and genotoxicity analysis in Allium cepa roots exposed to elutriate samples at zero and 50 μg mL-1 concentrations of the herbicides after the biodegradation process. The results were submitted to analysis of variance, the Tukey test and the Fischer test (p<0.05%) for comparison of means. The Aspergillus fumigatus - Penicillium citrinum consortium had a larger capacity to degrade atrazine but metabolism was inhibited in the presence of glyphosate and pendimethalin. There was a delay in the mitotic index in the meristematic cells of the Allium cepa roots exposed to the elutriates in the 50 μg mL-1 atrazine and pendimethalin concentration. There was a cellular alteration in the metaphase phase of the cells exposed to the elutriates at the 50 μg mL-1 concentration of the three herbicides. The changes occurred were low, indicating that there was degradation of part of the herbicides.

References

Agência Nacional de Vigilância Sanitária. Processo nº 25351.056754/2013-17. (2020). Retrieved from http://portal.anvisa.gov.br/documents/10181/5344168/18.+PTR+m utagenicidade.pdf/beba21d1-510a-439c-83e2-5e92cdec05eb

Bonfleur, E. J., Tornisielo, V. L., Regitano, J. B. & Lavorenti, A. (2015). The Effects of Glyphosate and Atrazine Mixture on Soil Microbial Population and Subsequent Impacts on Their Fate in a Tropical Soil. Water Air Soil Pollut, 226(21). http://doi.org/10.1007/s11270-014-2190-8

Castro-Gutiérrez, V., Masís-Mora, M., Caminal, G., Vicent, T., Carazo Rojas, E., Mora-López, M. & Rodríguez-Rodríguez, C. E. (2016). A microbial consortium from a biomixture swiftly degrades highconcentrations of carbofuran in fluidized bed reactors. Process Biochemistry, 51(10), 1585-1593. http://doi.org/10.1016/j.procbio.2016.07.003

Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C. & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598. http://doi.org/10.1016/j.cej.2015.09.001

Coelho, E. R. C. & Bernardo, L. D. (2017). Presença e remoção de atrazina, desetilatrazina, desisopropilatrazina e desetilhidroxiatrazina em instalação piloto de ozonização e filtração lenta. Engenharia Sanitária e Ambiental, 22(4), 789-796. http://doi.org/10.1590/s1413-41522017147638

Dias, M. G., Canto-Dorow, T. S., Coelho, A. P. D., & Tedesco, S. B. (2014). Efeito genotóxico e antiproliferativo de Mikania cordifolia (L. F.) Willd. (Asteraceae) sobre o ciclo celular de Allium cepa L. Revista brasileira de plantas medicinais, 16(12), 202-208. https://doi.org/10.1590/S1516-05722014000200006

Felisbino, K., Santos-Filho, R., Piancini, L. D. S., Cestari, M. M. & Leme, D. M. (2018). Mesotrione herbicide does not cause genotoxicity, but modulates the genotoxic effects of Atrazine when assessed in mixture using a plant test syst em (Allium cepa). Pesticide Biochemistry and Physiology, 150, 83-85. https://doi.org/10.1016/j.pestbp.2018.07.009

Ferreira, D. F. (2019). Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. https://doi.org/10.2 8951/rbb.v37i4.450

Freitas, L. A., Rambo, C. L., Franscescon F., Barros, A. F. P., Lucca, G. S., Siebel, A. M., Scapinello, J., Lucas, E. M. & Dal Magro. J. (2017). Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Revista Ambiente & Água, 12(4). https://doi.org/10.4136/ambi-agua.2036

Geed, S. R., Prasad, S., Kureel, M. K., Singh, R. S. & Rai, B. N. (2018). Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S3 isolated from agricultural field. Journal of Environmental Management, 214, 408-415. https://doi.org/10.1016/j.jenvman.2018.03.031

Góngora-Echeverría, V. R., García-Escalante, R., Rojas-Herrera, R., Giácoman-Vallejos, G. & Ponce-Caballero, C. (2020). Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicology and Environmental Safety, 200, 110734. https://doi.org/10.101 6/j.ecoenv.2020.110734

Gupta, J., Rathour, R., Singh, R., & Thakur, I. S. (2019). Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresource Technology, 282, 417-424. https://doi.org/10.1016/j.biortech.2019.03.054

Kanagaraj, J., Senthilvelan, T., & Panda, R. C. (2015). Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 17(6), 1443-1456. https://doi.org/10.1007/s10098-014-0869-6

Kočárek, M., Artikov, H., Voříšek, K. & Borůvka, L. (2016). Pendimethalin Degradation in Soil and Its Interaction with Soil Microorganisms. Soil and Water Research, 11(4), 213-219. https://doi.org/10.17221/226/2015-SWR

Kpagh, J., Sha’ato, R., Wuana, R. A. & Tor-Anyiin, T.A. (2016). Kinetics of Sorption of Pendimethalin on Soil Samples Obtained from the Banks of Rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, 4, 37-42. https://doi.org/10.4236/gep.2016.41004

Lira, R. K. S., & Orlanda, J. F. F. (2020). Biodegradation of the carbofuran insecticide by Syncephalastrum racemosum. Research, Society and Development, 9(7), 1-13. DOI: http://dx.doi.org/10.33448/rsd-v9i7.4932

Quintella, C. M., Mata, A. M. T., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Economics and Management. 241, 156–166. https://doi.org/10.1016/j.jenvman.2019.04.019

Saez, J. M., Aparicio, J. D., Amoroso, M. J., & Benimeli, C. S. (2015). Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochemistry, 50, 1923-1933. https://doi.org/10.1016/j.procbio.2015.08.014

Santos, J. F. L, Bispo R. B, Santos, L. C. B. & Karsburg, I. V. (2020). Avaliação do potencial citogenotóxico de extrato aquoso da folha de Valeriana officinalis L. Brazilian Journal of Development, 6(5), 26982-26993. https://doi.org/10.34117/bjdv6n5-229

Silveira, G. L., Lima, M. G. F., Reis, G. B., Palmieri, M. J. & Andrade-Vieria, L. F. (2017). Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere, 178, 359–367. https://doi.org/10.101 6/j.chemosphere.2017.03.048

Strange-Hansen, R., Holm, P. E., Jacobsen, O. S., & Jacobsen, C. S. (2004) Sorption, Mineralization and Mobility of N-(phosphonomethyl)glycine (Glyphosate) in Five Different Types of Gravel. Pest Management Science, 60(6), 570 – 578. https://doi.org/10.1002/ps.842

Tobler, N. B., Hofstetter, T. B. & Schwarzenbach, R. P. (2007). Assessing Iron-Mediated Oxidation of Toluene and Reduction of Nitroaromatic Contaminants in Anoxic Environments Using Compound-Specific Isotope Analysis. Environmental Science & Technology, 41(22), 7773–7780. https://doi.org/10.1021/es071129c

Tomlin, C. D. S. (2011). The Pesticide Manual [Op]: A World Compendium. Cabi

Villaverde, J., Rubio-Bellido, M., Lara-Moreno, A., Merchan, F. & Morillo, E. (2018). Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere, 193, 118–125. https://doi.org/10.1016/j.chemosphere.2017.10.172

Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Yang, Q. & Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100. https://doi.org/10.1016/j.watres.2016.04.041

Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R. & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. https://doi.org/10.4238 /2015.november.18.37

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 328. https://doi.org/10.1016/j.c ej.2020.125657

Zhu, J., Fu, L., Jin, C., Meng, Z., & Yang, N. (2019). Study on the Isolation of Two Atrazine-Degrading Bacteria and the Development of a Microbial Agent. Microorganisms, 3(7). https://doi.org/10.3390/microorganisms7030080

Downloads

Published

08/11/2020

How to Cite

BRAVIM, N. P. B.; ALVES, A. F. .; ORLANDA , J. F. F. Biodegradation of atrazine, glyphosate and pendimetaline employing fungal consortia. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1549119679, 2020. DOI: 10.33448/rsd-v9i11.9679. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9679. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences