Biodegradation of atrazine, glyphosate and pendimetaline employing fungal consortia




Degradation; Pesticides; Fungi; Agricultural soils.


The objective of the present study was to evaluate the bioremediation of soils artificially contaminated with atrazine, glyphosate and pendimethalin by fungal consortia in biodegradation processes in microcosms. Biodegradation was evaluated from microbial respiration over a period of 15 days and genotoxicity analysis in Allium cepa roots exposed to elutriate samples at zero and 50 μg mL-1 concentrations of the herbicides after the biodegradation process. The results were submitted to analysis of variance, the Tukey test and the Fischer test (p<0.05%) for comparison of means. The Aspergillus fumigatus - Penicillium citrinum consortium had a larger capacity to degrade atrazine but metabolism was inhibited in the presence of glyphosate and pendimethalin. There was a delay in the mitotic index in the meristematic cells of the Allium cepa roots exposed to the elutriates in the 50 μg mL-1 atrazine and pendimethalin concentration. There was a cellular alteration in the metaphase phase of the cells exposed to the elutriates at the 50 μg mL-1 concentration of the three herbicides. The changes occurred were low, indicating that there was degradation of part of the herbicides.


Agência Nacional de Vigilância Sanitária. Processo nº 25351.056754/2013-17. (2020). Retrieved from utagenicidade.pdf/beba21d1-510a-439c-83e2-5e92cdec05eb

Bonfleur, E. J., Tornisielo, V. L., Regitano, J. B. & Lavorenti, A. (2015). The Effects of Glyphosate and Atrazine Mixture on Soil Microbial Population and Subsequent Impacts on Their Fate in a Tropical Soil. Water Air Soil Pollut, 226(21).

Castro-Gutiérrez, V., Masís-Mora, M., Caminal, G., Vicent, T., Carazo Rojas, E., Mora-López, M. & Rodríguez-Rodríguez, C. E. (2016). A microbial consortium from a biomixture swiftly degrades highconcentrations of carbofuran in fluidized bed reactors. Process Biochemistry, 51(10), 1585-1593.

Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C. & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.

Coelho, E. R. C. & Bernardo, L. D. (2017). Presença e remoção de atrazina, desetilatrazina, desisopropilatrazina e desetilhidroxiatrazina em instalação piloto de ozonização e filtração lenta. Engenharia Sanitária e Ambiental, 22(4), 789-796.

Dias, M. G., Canto-Dorow, T. S., Coelho, A. P. D., & Tedesco, S. B. (2014). Efeito genotóxico e antiproliferativo de Mikania cordifolia (L. F.) Willd. (Asteraceae) sobre o ciclo celular de Allium cepa L. Revista brasileira de plantas medicinais, 16(12), 202-208.

Felisbino, K., Santos-Filho, R., Piancini, L. D. S., Cestari, M. M. & Leme, D. M. (2018). Mesotrione herbicide does not cause genotoxicity, but modulates the genotoxic effects of Atrazine when assessed in mixture using a plant test syst em (Allium cepa). Pesticide Biochemistry and Physiology, 150, 83-85.

Ferreira, D. F. (2019). Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. 8951/rbb.v37i4.450

Freitas, L. A., Rambo, C. L., Franscescon F., Barros, A. F. P., Lucca, G. S., Siebel, A. M., Scapinello, J., Lucas, E. M. & Dal Magro. J. (2017). Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina, Brazil. Revista Ambiente & Água, 12(4).

Geed, S. R., Prasad, S., Kureel, M. K., Singh, R. S. & Rai, B. N. (2018). Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S3 isolated from agricultural field. Journal of Environmental Management, 214, 408-415.

Góngora-Echeverría, V. R., García-Escalante, R., Rojas-Herrera, R., Giácoman-Vallejos, G. & Ponce-Caballero, C. (2020). Pesticide bioremediation in liquid media using a microbial consortium and bacteria-pure strains isolated from a biomixture used in agricultural areas. Ecotoxicology and Environmental Safety, 200, 110734. 6/j.ecoenv.2020.110734

Gupta, J., Rathour, R., Singh, R., & Thakur, I. S. (2019). Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresource Technology, 282, 417-424.

Kanagaraj, J., Senthilvelan, T., & Panda, R. C. (2015). Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy, 17(6), 1443-1456.

Kočárek, M., Artikov, H., Voříšek, K. & Borůvka, L. (2016). Pendimethalin Degradation in Soil and Its Interaction with Soil Microorganisms. Soil and Water Research, 11(4), 213-219.

Kpagh, J., Sha’ato, R., Wuana, R. A. & Tor-Anyiin, T.A. (2016). Kinetics of Sorption of Pendimethalin on Soil Samples Obtained from the Banks of Rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, 4, 37-42.

Lira, R. K. S., & Orlanda, J. F. F. (2020). Biodegradation of the carbofuran insecticide by Syncephalastrum racemosum. Research, Society and Development, 9(7), 1-13. DOI:

Quintella, C. M., Mata, A. M. T., & Lima, L. C. P. (2019). Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. Journal of Environmental Economics and Management. 241, 156–166.

Saez, J. M., Aparicio, J. D., Amoroso, M. J., & Benimeli, C. S. (2015). Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochemistry, 50, 1923-1933.

Santos, J. F. L, Bispo R. B, Santos, L. C. B. & Karsburg, I. V. (2020). Avaliação do potencial citogenotóxico de extrato aquoso da folha de Valeriana officinalis L. Brazilian Journal of Development, 6(5), 26982-26993.

Silveira, G. L., Lima, M. G. F., Reis, G. B., Palmieri, M. J. & Andrade-Vieria, L. F. (2017). Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere, 178, 359–367. 6/j.chemosphere.2017.03.048

Strange-Hansen, R., Holm, P. E., Jacobsen, O. S., & Jacobsen, C. S. (2004) Sorption, Mineralization and Mobility of N-(phosphonomethyl)glycine (Glyphosate) in Five Different Types of Gravel. Pest Management Science, 60(6), 570 – 578.

Tobler, N. B., Hofstetter, T. B. & Schwarzenbach, R. P. (2007). Assessing Iron-Mediated Oxidation of Toluene and Reduction of Nitroaromatic Contaminants in Anoxic Environments Using Compound-Specific Isotope Analysis. Environmental Science & Technology, 41(22), 7773–7780.

Tomlin, C. D. S. (2011). The Pesticide Manual [Op]: A World Compendium. Cabi

Villaverde, J., Rubio-Bellido, M., Lara-Moreno, A., Merchan, F. & Morillo, E. (2018). Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. Chemosphere, 193, 118–125.

Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Yang, Q. & Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100.

Yu, X. M., Yu, T., Yin, G. H., Dong, Q. L., An, M., Wang, H. R. & Ai, C. X. (2015). Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genetics and Molecular Research, 14(4), 14717–14730. /2015.november.18.37

Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 328. ej.2020.125657

Zhu, J., Fu, L., Jin, C., Meng, Z., & Yang, N. (2019). Study on the Isolation of Two Atrazine-Degrading Bacteria and the Development of a Microbial Agent. Microorganisms, 3(7).




How to Cite

Bravim, N. P. B., Alves, A. F. ., & Orlanda , J. F. F. (2020). Biodegradation of atrazine, glyphosate and pendimetaline employing fungal consortia. Research, Society and Development, 9(11), e1549119679.



Agrarian and Biological Sciences