Inga laurina crude extract to control Aedes aegypti
DOI:
https://doi.org/10.33448/rsd-v9i11.9683Keywords:
Ingá; Dengue; Phytosterols; γ- sitosterol; Phytol.Abstract
Aedes aegypti is the um mosquito responsible for the transmission of several diseases to humans such as dengue, chikungunya, Zika virus and urban yellow fever. The control of this culicid is done by utilizing insecticides that cause insect resistance. Therefore, natural alternatives to control A. aegypti have been sought. Thus, the objective of our work was to characterize the chemical composition of the crude extract of the leaves of Inga laurina and to evaluate the insecticidal activity of the extract on the larvae of A. aegypti. The crude extract was prepared form dry leaves by dynamic maceration using alcohol 96º GL as extracting solvent. The chemical identification of the compounds found in the crude extract was done by a gas chromatography coupled to mass spectrometry. The larvicidal activity was determined by larval packet test in third-stage development larvae A. aegypti. Fifteen compounds were identified in the leaves and the major ones were γ- sitosterol (34.39%), phytol (14.51%), squalene (8.57%) and stigmasterol (7.38%). I. laurina leaf crude extract presented larvicidal activity potential against A. aegypti larvae presenting lethal concentration of 50% (CL50) of 0.98 mg/mL and 99% (CL99) of 2.69 mg/mL. Thus, I. laurina leaf crude extract presented rich composition of phytosterols and promising insecticide activity against A. aegypti larvae, offering new possibilities for the application and development of products.
References
Adams, R. P. (2017). Identification of essential oil components by gas chromatography/mass spectrometry. Allured: Carol Stream.
Alout, H., Labbe, P., Berthomieu, A., Djogbenou, L., Leonetti, J. P., Fort, P. & Weill, M. (2012). Novel AChE inhibitors for sustainable insecticide resistance management. PLoS One, 7(10), e47125, 2012. doi: 10.1371/journal.pone.0047125
Amin, E., Radwan, M. M., El-Hawary, S. S., Fathy, M. M., Mohammed, R., Becnel, J. J. & Khan, I. (2012). Potent insecticidal secondary metabolites from the medicinal plant Acanthus montanus. Records of Natural Products, 6(3), 301-305.
Braga, I. M. & Valle, D. (2007). Aedes aegypti: histórico do controle no Brasil. Epidemiologia e Serviço de Saúde, 16, 113-118. doi:10.5123/S1679-49742007000200006
Brasil. (2020). Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes (dengue, chikungunya e Zika), Semanas Epidemiológicas 01 a 52. Boletim Epidemiológico da Secretaria de Vigilância em Saúde do Ministério da Saúde.
Braz-Filho, R. (2010). Phytochemical contribution to development of a emergent country Química Nova, 33(1), 229-239.
Calderón, A. I., Romero, L. I., Ortega-Barría, E., Brun, R., Correa, M. D. & Gupta, M. P. (2006). Evaluation of larvicidal and in vitro. antiparasitic activities of plants in a biodiversity plot in the Altos de Campana National Park, Panama. Pharmaceutical Biology, 44(7), 487-498. doi: 10.1080/13880200600878361
Camargo, M. F., Santos, A. H., Oliveira, A. W. S., Abrão, N., Alves, R. B. N. & Isac, E. (1998). Evaluation of the residual action of the larvicide Temephós over Aedes aegypti (Díptera-Culicidae) in different types of containers. Revista de Patologia Tropical, 27, 65-70. doi:10.1590/S0102-311X2002000600005
Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M. & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, 11(3), 315-335. doi:10.2174/1570159X11311030006
Costa, J. G. M., Rodrigues, F. F. G., Angélico, E. C., Silva, M. R., Mota, M. L., Santos, N. K. A., Cardoso, A. L. H. & Lemos, T. L. G. (2005). Chemical-biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Brazilian Journal of Pharmacognosy, 15(4), 304-309. doi:10.1590/S0102-695X2005000400008
Dufourc, E. J. (2008). The role of phytosterols in plant adaptation to temperature. Plant Signaling & Behavior, 3(2), 133-134. doi:10.4161/psb.3.2.5051
Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245-254. doi:10.1289/ehp.9087245
Furtado, R. F., Lima, M. G. A., Neto, M. A., Bezerra, J. N. S. & Silva, M. G. V. (2005). Larvicidal activity of essential oils against Aedes aegypti L. (Diptera: Culicidae) Neutropical Entomology, 34(5), 843-847. doi: 10.1590/S1519-566X2005000500018
Gade, S., Rajamanikyam, M., Vadlapudi, V., Nukala, K. M., Aluvala, R., Giddigari, C., Karanam, N. J., Barua, N. C., Pandey, R., Upadhyayula, V. S. V., Sripadi, P., Amanchy, R. & Upadhyayula, S. M. (2017). Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta, 1861(3), 541-550. doi:10.1016/j.bbagen.2016.11.044
Ghosh, A. (2013). Efficacy of phytosterol as mosquito larvicide. Asian Pacific Journal of Tropical Disease, 3(3), 252. doi:10.1016/S2222-1808(13)60050-X
Gullan, P. J. (2017). Insetos: fundamentos da entomologia. Gullan, P. J., Cranston P. S., Com ilustrações de Karina H. McInnes; Tradução e Revisão Técnica Eduardo da Silva Alves dos Santos, Sonia Maria Marques Hoenen, 5. ed. Rio de Janeiro: Roca..
Lokvam, J., Clausen, T. P., Grapov, D., Coley, P. D. & Kursar, T. A. (2007). Galloyl depsides of tyrosine from young leaves of Inga laurina. Journal of Natural Products, 70(1), 134-136. doi: 10.1021/np060491m
Lorenzi, H. (2002). Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 4 ed. Instituto Plantarum de Estudos da Flora Ltda: Nova Odessa, p. 384.
Macedo, M. L. R., Garcia, V. A., Freire, M. G. M. & Richardson, M. (2007). Characterization of a kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW). Willd. Phytochemistry, 68(8), 1104-1111. doi:10.1016/j.phytochem.2007.01.024
Macoris, M. L. G., Andrighetti, M. T. M., Takaku, L., Glasser, C. L., Garbeloto, V. C. & Bracco, J. E. (2003). Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Memórias do Instituto Oswaldo Cruz, 98, 703-708. doi:10.1590/S0074-02762003000500020
Mahesh Babu, S., Baranitharan, M., Dhanasekaran, S., Thushimenan, S., Kovendan, K. & Jeyasankar, A. (2016). Chemical compositions, antifeedant and larvicidal activity of Pongamia pinnata (L.) against polyphagous field pest, Spodoptera litura. International Journal of Zoological Investigations, 2(1), 48-57.
Manjarres-Suarez, A. & Olivero-Verbel, J. (2013). Chemical control of Aedes aegypti: a historical perspective. Revista Costarricense de Salud Pública, 22(1), 68-75.
Marston, A., Kissling, J. & Hostettmann, K. A. (2002). A rapid TLC bioautography method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochemical Analysis, 13, 51-54. doi:10.1002/pca.623
Martins, C. M., Morais, S. A. L., Martins, M. M., Cunha, L. C. S., Silva, C. V., Martins, C. H. G., Leandro, L. F., Oliveira, A., Aquino, F. J. T., Nascimento, E. A. & Chang, R. (2019). Chemical composition, antifungal, and cytotoxicity activities of Inga laurina (Sw.) Willd leaves. Scientific World Journal, 9423658. doi: 10.1155/2019/9423658
Milton, K. & Jenness, R. (1987). Ascorbic acid content of neotropical plant parts available to wild monkey and bats. Experientia, 43, 339-342. doi:10.1007/BF01945577
Miranda, C. G., Arantes, M. C. B., Rezende, M. H., Oliveira, L. M. G., Freitas, M. R. F., Nogueira, J. C. M., Paula, J. R. & Bara, M. T. F. (2009). Pharmacognostic characterization of leaves and seeds of Albizia lebbeck (L.) Benth. (Fabaceae). Revista Brasileira de Farmacognosia, 19(2), 537-544. doi:10.1590/S0102-695X2009000400005
Okwute, S. K. (2012). Plants as Potential Sources of Pesticidal Agents: A Review. In: Soundararajan, R. P. Pesticides - Advances in Chemical and Botanical Pesticides .IntechOpen. doi:10.5772/46225
Pan American Health Organization / World Health Organization (PAHO/WHO). (2019) Epidemiological Update: Dengue. 11 November 2019, Washington, D.C.
Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J. & Lampi, A-M. (2000). Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture, 80, 939-966. doi:10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
Possette, R. F. S. & Rodrigues, W. A. (2010). O gênero Inga Mill (Leguminosae – Mimosoideae) no estado do Paraná. Acta Botanica Brasilica, 24(2), 354-368.doi:10.1590/S0102-33062010000200006
Rahuman, A. A., Gopalakrishnan, G., Venkatesan, P. & Geetha, K. (2008). Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitology Research, 102, 981-988. doi:10.1007/s00436-007-0864-5
Roel, A. R. (2001). Utilização de plantas com propriedades inseticidas: uma contribuição para o Desenvolvimento Rural Sustentável. Revista Internacional de Desenvolvimento Local, 1(2), 43-50.
Wang, K., Senthil-kumar, M., Ryu, C-M., Kang, L. & Mysore, K. S. (2012). Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiology, 158, 1789-1802.
Yang, Z. D., Zhang, X., Duan, D. Z., Song, Z., Yang, M. J. & Li, S. (2009). Modifiel TLC bioautographie method for screening acetylcholinesterase inhibitors from plant extracts. Journal of Separation Science, 32, 3257-3259. doi:10.1002/jssc.200900266
Zara, A. L. S. A., Santos, S. M., Fernandes-Oliveira, E. S., Carvalho, R. G., Coelho, G. E. (2016). Aedes aegypti control strategies: a review. Epidemiologia e Serviços de Saúde, 25(2), 391-404. doi:10.5123/s1679-49742016000200017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Elisangela Yumi Sugauara; Isabelle Luiz Rahal; Herika Line Marko de Oliveira; Wanessa de Campos Bortolucci; Carla Maria Mariano Fernandez; Maria Graciela Iecher Faria; Suelen Pereira Ruiz; José Eduardo Gonçalves; Nelson Barros Colauto; Zilda Cristiani Gazim; Giani Andrea Linde
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.