Physical, mechanical and thermal behavior of concrete block stabilized with glass fiber reinforced polymer waste

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9838

Keywords:

Construction materials; Sustainability; Residue; Thermal conductivity; GFRP waste.

Abstract

The Glass Fiber Reinforced Polymer (GFRP) waste despite having excellent physical and mechanical properties is still largely unexplored besides presenting large volume of waste with very low degradability. The use of concrete block presents high resistance to compression, low price high masonry coating ratio by material weight, however high thermal conductivity. Therefore, the study aimed to produce and investigate the effect of adding GRFP residues to concrete blocks due to physical, mechanical and thermal properties. The compositions were made by replacing the fine gravel between 0 to 10% in mass by the GFRP residue. They were evaluated from physical, mechanical and thermal tests. The results showed that the use of GFRP residue did not interfere in water absorption and compressive strength, despite the significant increase in mechanical energy absorption of the material. Thermal conductivity reduced by 46% and the concrete blocks were 7% lighter. In addition to providing a destination for a considerable quantity of the waste, the commercial value of the final product is higher due to using a residue with low degradability and high energy power due to burning during recycling.

References

Algin H. M., & Turgut P. (2008). Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074–1080. doi:10.1016/j.conbu ildmat.2007.03.006

Alyousef R., Benjeddou O., Soussi C., Khadimallah M. A., & Jedidi M. (2019). Experimental Study of New Insulation Lightweight Concrete Block Floor Based on Perlite Aggregate, Natural Sand, and Sand Obtained from Marble Waste. Advances in Materials Science and Engineering, 2019, 14. doi:10.1155/2019/8160461

Ascione L., De Felice G., De Santis S. (2015). A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems. Composites Part B: Engineering, 78, 497–506. doi:10.1016/j.compositesb.2015.03.079

ABNT - Associação Brasileira de Normas Técnicas (2018). NBR 16697. Portland cement - Requirements. Rio de Janeiro, ABNT, 12 p.

ABNT - Associação Brasileira de Normas Técnicas (2003). NBR NM 248. Aggregates - Sieve analysis of fine and coarse aggregates. Rio de Janeiro, ABNT, 6 p.

ABNT - Associação Brasileira de Normas Técnicas (2009). NBR NM 52. Fine aggregate - Determination of the bulk specific gravity and apparent specific gravity. Rio de Janeiro, ABNT, 6 p.

ABNT - Associação Brasileira de Normas Técnicas (2013). NBR 12118. Hollow concrete blocks for concrete masonry — Test methods, Rio de Janeiro, ABNT, 14 p.

ABNT - Associação Brasileira de Normas Técnicas (2016). NBR 6136. Hollow concrete blocks for concrete masonry — Requirements, Rio de Janeiro, ABNT, 10 p.

ASTM. (2014). ASTM E1131. Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International, West Conshohocken, PA.

Bains M., & Stokes E. (2013). Developing a Resource Efficiency Action Plan for the Composites 523 Sector. URS & Netcomposites.

Bilodeau A., Kodur V. K. R., & Hoff G. C. (2004). Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire. Cement and Concrete Composites, 26(2), 163–174. doi:10.1016/S0958-9465(03)00085-4

Brandt A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. doi:10.1016/j.compstruct.2008.03.006

Callejas I. J. A., Durante L. C., & Oliveira A. S. (2017). Construction and demolition conductivity of recycled Thermal resistance and waste (RCDW) concrete blocks. Civil Engineering, 70(2), 167–173. doi:10.1590/0370-44672015700048

Carozzi F. G., Milani G., & Poggi C. (2014). Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures. Composite Structures, 107, 711–725. doi:10.1016/j.compstruct.2013.08.026

Chen Z., Li J. S., Poon C. S. (2018). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, 1447–1459. doi:10.1016/j.jclepro.2017.10.140

Choi Y., Moon D., Chung J., & Cho S. (2005). Effects of waste PET bottles aggregate on the properties of concrete. Cement and Concrete Research, 35, 776–781. doi:10.1016/j.cemconres.2004.05.014

Consoli N. C., Montardo J. P., Donato M., & Prietto P. D. M. (2004). Effect of material properties on the behaviour of sand?cement?fibre composites. Ground Improvement, 8(2), 77–90. doi:10.1680/grim.8.2.77.36370

Correia J. R., Almeida N. M., & Figueira J. R. (2011). Recycling of FRP composites: Reusing fine GFRP waste in concrete mixtures. Journal of Cleaner Production, 19(15), 1745–1753. doi:0.1016/j.jclepro.2011.05.018

Dimitrioglou N., Tsakiridis P. E., Katsiotis N. S., Katsiotis M. S., Perdikis P., & Beazi M. (2016). Production and Characterization of Concrete Paving Blocks Containing Ferronickel Slag as a Substitute for Aggregates. Waste and Biomass Valorization, 7(4), 941–951. doi:0.1007/s12649-015-9465-1

Fajardo V. M. S., Torres M. E., & Moreno A.J. (2015). Hydraulic and hygrothermal properties of lightweight concrete blocks with basaltic lapilli as aggregate. Construction and Building Materials, 94, 398–407. doi:10.1016/j.conbuildmat.2015.07.020

Ferreira D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109–112. doi: 10.1590/s1413-70542014000200001

Gandia R. M., Campos A. T., Corrêa A. A. R., & Gomes F. C. (2018). Energy costs comparison of masonry made from different materials. Theoretical and Applied Engineering, 2(1), 1–8. Retrieved from http://www.taaeufla.deg.ufla.br/index .php/TAAE/issue/view/5/R1023

Gandia R. M., Gomes F. C., Corrêa A. A. R., Rodrigues M. C., & Mendes R. F. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Construction and Building Materials, 222, 168–182. doi:10.1016/j.conbuildmat.2019.06.107

Giamundo V., Lignola G. P., Prota A., Manfredi G. (2014). Nonlinear analyses of adobe masonry walls reinforced with fiberglass mesh. Polymers, 6(2), 464–478. doi:10.3390/polym6020464

Kanchanapiya P., Methacanon P., & Tantisattayakul T. (2018). Resources , Conservation & Recycling Techno-economic analysis of light weight concrete block development from polyisocyanurate foam waste. Resources, Conservation & Recycling, 138(December 2017), 313–325. doi:10.1016/j.resconrec.2018.07.027

Kemerich P. D. C., Piovesan M., Bertoletti L. L., Altmeyer S., & HohmVorpagel T. (2013). Glass fiber: characterization, disposal and environmental impact generated. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 10(10), 2112–2121. doi:10.5902/223611707590

Konsta-Gdoutos M. S., Metaxa Z. S., Shah S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement and Concrete Research, 40(7), 1052–1059. doi:10.1016/j.cemconres.2010.02.015

Kus H., Özkan E., Göcer Ö., & Edis E. (2013). Hot box measurements of pumice aggregate concrete hollow block walls. Construction and Building Materials, 38, 837–845. doi:10.1016/j.conbuildmat.2012.09.053

Lee G., Ling T., Wong Y., & Poon C. (2011). Effects of crushed glass cullet sizes , casting methods and pozzolanic materials on ASR of concrete blocks. Construction and Building Materials, 25(5), 2611–2618. doi:10.1016/j.conbuildmat.2010.12.008

Lee G., Sun C., Lung Y., & Chai T. (2013). Effects of recycled fine glass aggregates on the properties of dry – mixed concrete blocks. Construction and Building Materials, 38, 638–643. DOI: 10.1016/j.conbuildmat.2012.09.017

Ling T., & Poon C. (2014). Use of recycled CRT funnel glass as fi ne aggregate in dry-mixed concrete paving blocks. Journal of Cleaner Production, 68, 209–215. doi:10.1016/j.jclepro.2013.12.084

Mattar D. C., & Viana E. (2012). Utilização De Resíduos Poliméricos Da Indústria De Reciclagem De Plástico Em Blocos De Concreto. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 8(8), 1722–1733. doi:10.5902/223611706471

Millogo Y., Aubert J. E., Séré A. D., Fabbri A., Morel J. C. (2016). Earth blocks stabilized by cow-dung. Materials and Structures, 49(11), 4583–4594. doi:10.1617/s11527-016-0808-6

Modro N. L. R., Modro N.1, Modro N.2, & Oliveira A. P. (2009). Evaluation of concrete made of Portland cement containing PET wastes. Revista Matéria, 14(1), 725–736.

Orth C. M., Baldin N., Zanotelli C. T. (2012). Impacts of the manufacturing process using fiberglass reinforced plastic composite on the environment and occupational health: the automotive industry case. Revista Produção Online, 12(2), 537–556. doi:10.14488/1676-1901.v12i2.943

Pinto K. N. C., & Rossi J. L. (2009). Reciclagem de resíduos de materiais compósitos de matriz polimérica: poliéster insaturado reforçado com fibras de vidro. Universidade de São Paulo, São Paulo.

Ribeiro M. C. S., Fiúza A., Castro A. C. M., Silva F. G., Dinis M. L., Meixedo J. P., & Alvim M. R. (2013). Mix design process of polyester polymer mortars modified with recycled GFRP waste materials. Composite Structures, 105, 300–310. doi:10.1016/j.compstruct.2013.05.023

Ribeiro M. C. S., Meixedo J. P., Fiúza A., Dinis M. L., Castro A. C. M., Silva F. J. G. ... Alvim M. R. (2011). Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials. World Academy of Science, Engineering and Technology, 5, 3–27. doi:10.5281/zenodo.1058061

Savastano H. J., Warden P. G., & Coutts R. S. P. (2003). Mechanically pulped sisal as reinforcement in cementitious matrices. Cement & Concrete Composites, 25, 311–319.

Shuh-Huei L., Shah S. P., Zongjin L., & Toshio M. (1993). Micromechanical analysis of multiple fracture and evaluation of debonding behavior for fiber-reinforced composites. International Journal of Solids and Structures, 30(11), 1429–1459. doi:10.1016/0020-7683(93)90070-N

Silva A. R. (2010). Estudo térmico e de materiais de um bloco para construção de casas populares, confeccionado a partir de um compósito a base de gesso, EPS e raspa de pneu. Universidade Federal do Rio Grande do Norte, Natal.

Silva F. A., Toledo Filho R. D., Melo Filho J. A., & Fairbairn E. M. R. (2010). Physical and mechanical properties of durable sisal fiber-cement composites. Construction and Building Materials, 24(5), 777–785. doi:10.1016/j.conbuildmat.2009.10.030

Soroushian P., & Bayasi Z. (1991). Strength and ductility of steel fibre reinforced concrete under bearing pressure. Magazine of Concrete Research, 43(157), 243–248.

Soutsos M. N., Tang K., & Millard S. G. (2011). Concrete building blocks made with recycled demolition aggregate. Construction and Building Materials, 25(2), 726–735. doi:10.1016/j.conbuildmat.2010.07.014

Souza M. F., Soriano J., & Patino M. T. O. (2018). Compressive strength and economic viability of concrete blocks with ceramic brick residues. Revista Matéria, 23(3), 1–11. doi:10.1590/S1517-707620180003.0537

Swamy R. N. (1975). Fibre Reinforced Cement Based Composites Fibre Reinforcement of Cement and Concrete. Materials and Structures, 8(3), 235–254. Retrieved from https://link.springer.com/content/pdf/10.1007%2FBF02475172.pdf

Torkaman J., Ashori A., & Momtazi A. S. (2014). Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials, 50, 432–436. doi:10.1016/j.conbuildmat.2013.09.044

Udawattha C., & Halwatura R. (2018). Advances in Building Energy Research Thermal performance and structural cooling analysis of brick , cement block , and mud concrete block. Advances in Building Energy Research, 12(2), 150–163. doi:10.1080/17512549.2016.1257438

Xu T., Chen Q., Zhang Z., Gao X., & Huang G. (2016). Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Building and Environment, 104, 172–177. doi:10.1016/j.buildenv.2016.05.003

Yang S., Ling T., Cui H., & Sun C. (2019). Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks. Construction and Building Materials, 209, 522–531. doi:0.1016/j.conbuildmat.2019.03.131

Zaetang Y., Sata V., Wongsa A., & Chindaprasirt P. (2016). Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials, 111, 15–21. doi:10.1016/j.conbuildmat.2016.02.060

Zhu L., Dai J., Bai G., & Zhang F. (2015). Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Construction and Building Materials, 94, 620–628. doi:10.1016/j.conbuildmat.2015.07.058

Downloads

Published

14/11/2020

How to Cite

Portela, J. D. ., Gandia, R. M. ., Araújo, B. L. O. ., Pereira, R. A. ., & Gomes , F. C. . (2020). Physical, mechanical and thermal behavior of concrete block stabilized with glass fiber reinforced polymer waste. Research, Society and Development, 9(11), e2939119838. https://doi.org/10.33448/rsd-v9i11.9838

Issue

Section

Agrarian and Biological Sciences