Pathophysiology of sepsis: a focus on the activity of interleukin 33 (IL-33)

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9898

Keywords:

Immune dysfunction; Interleukin 33; Pathophysiology of sepsis; Cytokines.

Abstract

Sepsis is one of the main causes of morbidity and mortality, its prognosis is related to every pathophysiological process that occurs during the condition. In this context, this research aims to present the performance of Interleukin 33 (IL-33) in the pathophysiological process that occurs in sepsis and evaluate its involvement in immunosuppression, since studies show that IL-33 in the action of the inflammatory process triggers T-type responses help 2 (Th2), in addition to being a kind of alarmin for several cells Of patients who pass through sepsis. This research is an integrative literature review, based on articles published from 2015 in Portuguese, English arranged in the LILACS and MEDLINE databases. As a result, 24 studies were selected where 15 of these composed two categories: functional activity of IL-33 in the case of patients in sepsis, and Immunosuppression due to IL-33 activity in a patient after recovery from the sepsis process. Thus, it was concluded that this cytokine acts as a path of several trails, where it benefits the body, also bringing harm in certain triggers associated with other processes. Understanding these mechanisms is extremely relevant to assist in the development of effective diagnosis and therapies to minimize subsequent damage caused by sepsis.

Author Biography

Maysa de Vasconcelos Brito, Faculdade Estácio de Macapá

Graduação em Biomedicina pela UFPA; Mestrado em Neurociências e Biologia Celular pela UFPA; Doutorado em Doenças Tropicais pela UFPA; Docente e pesquisadora da Faculdade Estácio de Macapá. 

 

References

Braun, H., Afonina, I. S., Mueller, C., & Beyaert, R. (2018). Dichotomous function of IL-33 in health and disease: from biology to clinical implications. Biochemical Pharmacology, 148, 238-252.

Carvalho, A. C. V., & Domingueti, C. P. (2016). Papel das citocinas inflamatórias na nefropatia diabética. Rev. Soc. Bras. Clín. Méd, 177-182.

Cayrol, C., & Girard, J. P. (2018). Interleukin‐33 (IL‐33): a nuclear cytokine from the IL‐1 family. Immunological Reviews, 281(1), 154-168.

Cebinelli, G. C. M. Papel dos monócitos inflamatórios na sepse (Doctoral dissertation, Universidade de São Paulo).

Di Salvo, E., Ventura-Spagnolo, E., Casciaro, M., Navarra, M., & Gangemi, S. (2018). IL-33/IL-31 axis: a potential inflammatory pathway. Mediators of inflammation, 2018.

Ferreira, V. L., Borba, H. H., Bonetti, A. D. F., Leonart, L. P., & Pontarolo, R. (2018). Cytokines and interferons: types and functions. In Autoantibodies and cytokines. IntechOpen.

Freitas, R. B., Santiago, M. T., Bahia, C. P., Pereira, L. P., de Mello, C. M., Nogueira, A. C., & Antoniol, T. (2017). Aspectos relevantes da sepse. Revista Científica FAGOC-Saúde, 1(2), 25-32.

Gonçalves, M. J. R. (2019). Como escrever um Artigo de Revisão de Literatura. Revista JRG de Estudos Acadêmicos, 2(5), 29-55

Griesenauer, B., & Paczesny, S. (2017). The ST2/IL-33 axis in immune cells during inflammatory diseases. Frontiers in immunology, 8, 475.

Instituto Latino Americamo de sepse (ILAS). Programa de melhoria de qualidade protocolos gerenciados de sepse, 3, 2019.

Krychtiuk, K. A., Stojkovic, S., Lenz, M., Brekalo, M., Huber, K., Wojta, J., & Speidl, W. S. (2018). Predictive value of low interleukin-33 in critically ill patients. Cytokine, 103, 109-113.

Lopes, A. T. D. H., & Neves, C. R. (2020). A aplicação dos novos conceitos de sepse no Brasil: uma revisão integrativa.

Lv, R., Zhao, J., Lei, M., Xiao, D., Yu, Y., & Xie, J. (2017). IL-33 Attenuates sepsis by inhibiting IL-17 receptor signaling through upregulation of SOCS3. Cellular Physiology and Biochemistry, 42(5), 1961-1972.

Morrow, K., Coopersmith, C., & Ford, M. (2019). IL-17, IL-27, and IL-33: A novel axis linked to immunological dysfunction during sepsis. Frontiers in immunology, 10, 1982.

Nascimento, D. C., Melo, P. H., Pineros, A. R., Ferreira, R. G., Colón, D. F., Donate, P. B., & Borges, M. C. (2017). IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nature communications, 8(1), 1-14.

Netea, M. G., van de Veerdonk, F. L., van der Meer, J. W., Dinarello, C. A., & Joosten, L. A. (2015). Inflammasome-independent regulation of IL-1-family cytokines. Annual review of immunology, 33, 49-77.

Noel, G., Arshad, M. I., Filliol, A., Genet, V., Rauch, M., Lucas-Clerc, C., & Samson, M. (2016). Ablation of interaction between IL-33 and ST2+ regulatory T cells increases immune cell-mediated hepatitis and activated NK cell liver infiltration. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311(2), G313-G323.

Pedrosa, I. A. (2017). Impacto da interleucina-33 como fator prognóstico no câncer gástrico (Master's thesis, Universidade Federal de Pernambuco).

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM, Santa Maria/RS. Recuperado de http://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Portugal, C. A. A. Avaliação das concentrações da interleucina 33 e do receptor ST2 em secreções respiratórias e no plasma de crianças com bronquiolite viral aguda e sua associação com a gravidade da doença (Doctoral dissertation, Universidade de São Paulo).

Santos, M. R. D., Cunha, C. C. D., Ishitani, L. H., & França, E. B. (2019). Mortes por sepse: causas básicas do óbito após investigação em 60 municípios do Brasil em 2017. Revista Brasileira de Epidemiologia, 22, e190012-supl.

Sellam, J., Rivière, E., Courties, A., Rouzaire, P. O., Tolusso, B., Vital, E. M., & Chavez, H. H. (2016). Serum IL-33, a new marker predicting response to rituximab in rheumatoid arthritis. Arthritis research & therapy, 18(1), 294.

Siede, J., Fröhlich, A., Datsi, A., Hegazy, A. N., Varga, D. V., Holecska, V., & Löhning, M. (2016). IL-33 receptor-expressing regulatory T cells are highly activated, Th2 biased and suppress CD4 T cell proliferation through IL-10 and TGFβ release. PloS one, 11(8), e0161507.

Sousa, L. M. M. S., Marques-Vieira, C. M. A., Severino, S. S., & Antunes, A. V. (2017). Metodologia de revisão integrativa da literatura em enfermagem.

Stenken, J. A., & Poschenrieder, A. J. (2015). Bioanalytical chemistry of cytokines–A review. Analytica chimica acta, 853, 95-115.

Stockis, J., Liénart, S., Colau, D., Collignon, A., Nishimura, S. L., Sheppard, D., & Lucas, S. (2017). Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8. Proceedings of the National Academy of Sciences, 114(47), E10161-E10168.

Xu, H., Turnquist, H. R., Hoffman, R., & Billiar, T. R. (2017). Role of the IL-33-ST2 axis in sepsis. Military Medical Research, 4(1), 1-9.

Published

18/11/2020

How to Cite

Gonçalves, M. F. ., Melo, N. C. de ., & Brito, M. de V. (2020). Pathophysiology of sepsis: a focus on the activity of interleukin 33 (IL-33). Research, Society and Development, 9(11), e3779119898. https://doi.org/10.33448/rsd-v9i11.9898

Issue

Section

Health Sciences