An Initial Experiment on Associations between Crimes in Brazil
DOI:
https://doi.org/10.33448/rsd-v9i11.10078Keywords:
Criminal analysis; Crime; Data science; Data mining; Python and R together.Abstract
Context: Crime has been a problem around the world, causing damage to societies. Education, poverty, employment and climate are some of the factors that affect the crime rate, leading authorities to spend millions annually on actions to combat violence and strategic plans to prevent and reduce crime. Objective: Applying Data Science concepts to analyze government data related to crimes in Brazil. Method: Use of data mining techniques of association rules (AR), in a controlled experiment, to detect patterns between the types of crimes, as well as the relationship between the types of crime and the months of the year. Results: In the context of associations between crimes, the states with the most interesting rules were: Bahia, with 15 associations, São Paulo, with 12 associations, Goiás, with 11, and Paraná, with 9. Highlight for the association “Robbery Resulting in Death Cargo Roberry”, found for the State of Bahia, which reached 99% confidence (0.99). In the scope of associations between crimes and months of the year, Paraíba had 2 associations, Maranhão, Rondônia and São Paulo, with 1 association each. Highlight for rule “December Vehicle Steal”, found for the State of São Paulo, which reached a confidence of 84% (0.84). Conclusion: The results exposed in this research assist criminal analysts in the decision-making process to prevent and reduce crime in the country, since they can allow priority in inhibiting crimes that are antecedents of other occurrences within the same state or crimes that occur in the same period.
References
AtlasBR. (2020). AtlasBR. Recuperado de http://www.atlasbrasil.org.br
Barros, P., Baggio, I., Stege, A., & Hilgemberg, C. (2019). Economic development and crime in Brazil: a multivariate and spatial analysis.
Basili, V. R., & Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE Transactions on software engineering, (6), 728-738.
Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J., & Rombach, D. (2014). Aligning Organizations Through Measurement: The GQM+ Strategies Approach. Springer.
Belesiotis, A., Papadakis, G., & Skoutas, D. (2018). Analyzing and Predicting Spatial Crime Distribution Using Crowdsourced and Open Data. ACM Trans. Spatial Algorithms Syst.
Campos, O. S. (2018). Data analytics transparente para descoberta de padrões e anomalias na realização de convênios e contratos de repasse federais.
Catlett, C., Cesario, E., Talia, D., & Vinci, A. (2018). A Data-Driven Approach for Spatio-Temporal Crime Predictions in Smart Cities. 2018 IEEE International Conference on Smart Computing (SMARTCOMP), (pp. 17-24). Taormina.
Chapetta, W. A. (2006). Uma Infra-estrutura para Planejamento, Execução e Empacotamento de Estudos Experimentais em Engenharia de Software (Doctoral dissertation, Dissertação de Mestrado, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brasil).
Chaves, M. S. R. S., & Shimizu, I. S. (2018). Síndrome de burnout e qualidade do sono de policiais militares do Piauí. Revista Brasileira de Medicina do Trabalho, 16(4), 436-441.
Gillmeister, P., & Cazella, S. (2007). Uma análise comparativa de algoritmos de regras de associação: minerando dados da indústria automotiva. Escola Regional de Banco de Dados (ERBD). Caxias do Sul, RS.
Guimarães, F. F., Joaquim, S. F., Manzi, M. P., Silva, R. C. D., Bruder-Nascimento, A. C. M. D. O., Costa, E. O., & Langoni, H. (2016). Comparison phenotypic and genotypic identification of Staphylococcus species isolated from bovine mastitis. Pesquisa Veterinária Brasileira, 36(12), 1160-1164.
Gupta, M., Chandra, B., & Gupta, M. (2014). A framework of intelligent decision support system for Indian police. J. Enterp. Inf. Manag., 27, 512-540.
Huang, S.-M. (2013). A Study of the Application of Data Mining on the Spatial Landscape Allocation of Crime Hot Spots. Communications in Computer and Information Science, 398, 274-286.
IBGE. (2020). Instituto Brasileiro de Geografia e Estatística. Recuperado de https://www.ibge.gov.br
Lallich, S., Teytaud, O., & Prudhomme, E. (2007). Association Rule Interestingness: Measure and Statistical Validation. Studies in Computational Intelligence, 43, 251-275.
Marzan, C. S., Baculo, M. J. C., de Dios Bulos, R., & Ruiz Jr, C. (2017). Time series analysis and crime pattern forecasting of city crime data. International conference on algorithms, computing and systems, pp. 113-118.
Melo, M., Teixeira, J., & Campos, G. (2012). A prediction model for criminal levels using socio-criminal data. International Journal of Electronic Security and Digital Forensics, 4, 201-214.
MSJP. (2020). Portal Brasileiro de Dados Abertos. Recuperado de http://dados.gov.br
Nogueira de Oliveira, R., & Colaço Júnior, M. (2018). Experimental Analysis of Stemming on Jurisprudential Documents Retrieval. Information, 9, 28.
Paranhos, R., Figueiredo Filho, D. B., da Rocha, E. C., da Silva Júnior, J. A., Neves, J. A. B., & Santos, M. L. W. D. (2014). Desvendando os mistérios do coeficiente de correlação de Pearson: o retorno. Leviathan (São Paulo), (8), 66-95.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Pereira, B., & Brandão, W. (2014). ARCA : MINING CRIME PATTERNS USING ASSOCIATION RULES.
PostgreSQL. (2020). PostgreSQL. Recuperado de https://www.postgresql.org.
Prado, K. H. de J., Souza, L. S., de Jesus Junior, I. D., & Colaço Júnior, M. (2020). Applied Intelligent Data Analysis to Government Data Related to Criminal Incident: A Systematic Review. Journal of Applied Security Research, 1-35.
Procaci da Silva, A. (2004). Regras de associação quantitativas em intervalos não contínuos.
Santos, B. S., Júnior, M. C., & de Souza, J. G. (2018). A initial experimental evaluation of the neuromessenger: a collaborative tool to improve the empathy of text interactions. In Information Technology-New Generations (pp. 411-419). Springer, Cham.
Sevri, M., Karacan, H., & Akcayol, M. (2017). Crime Analysis Based on Association Rules Using Apriori Algorithm. International Journal of Information and Electronics Engineering, 7, 99-102.
Singh, N., Kaverappa, C. B., & Joshi, J. D. (2018). Data mining for prevention of crimes. In International Conference on Human Interface and the Management of Information (pp. 705-717). Springer, Cham.
Sumithra, R., & Paul, S. (2010). Using distributed apriori association rule and classical apriori mining algorithms for grid based knowledge discovery. 2010 Second International conference on Computing, Communication and Networking Technologies, (pp. 1-5).
Travassos, G., Gurov, D., & Amaral, E. (2002). Introdução à engenharia de software experimental.
Varde, A., Takahashi, M., Rundensteiner, E., Ward, M., Maniruzzaman, M., & Jr., R. (2004). Apriori Algorithm and Game-of-Life for Predictive Analysis in Materials Science. International Journal of Knowledge-Based and Intelligent Engineering Systems, 8, 213-228.
Wu, J., He, Z., Gu, F., Liu, X., Zhou, J., & Yang, C. (2016). Computing exact permutation p-values for association rules. Information Sciences, 346, 146-162.
Yadav, S., Timbadia, M., Yadav, A., Vishwakarma, R., & Yadav, N. (2017). Crime pattern detection, analysis & prediction. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 1, pp. 225-230). IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Wesckley Faria Gomes; Methanias Colaço Júnior; Kleber Henrique de Jesus Prado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.