The rainfall erosivity on rio Doce basin cities of Minas Gerais, through the netErosividade MG software

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10126

Keywords:

Erosive process; Erosive potentials; Web map; Water resources management.

Abstract

The sediment deposition on water bodies, provided by accelerated erosive processes, is one of the most relevant superficials water’s quality problems of the rio Doce watershed. The erosion can be caused by different ways, among them is rainfall erosion, which can be accentuated by the characteristics of rainfall intensity, slope, and soil type. Aim to characterize the erosive potential of rains in each rio Doce basin cities of Minas Gerais, this paper uses the netErosividade MG software. For this purpose, were selected 190 (hundred ninety) cities of Minas Gerais in the Rio Doce watershed and take their rainfall erosivity values. The data were tabulated through the respective Water Resources Management Unit and organized in a descending way. The output obtained showed that the Piranga unit has the most erosive potential, with 6928,61 , a medium grade. The other two major potentials were the Piracicaba unit (6761,94) and Manhuaçu unit (5884,3), which are also medium grade potential. A sub-basin with the lowest potential output was the Suaçuí, with values ​​of low erosive grade potential, 3417,59 . From the data generated, it was possible to draw a distribution chart of erosive potential over a hydrological year for each sub-basin. Through these results, it is expected that tables, charts, and web map produced may support the actors of water resources management to make public policy decisions at the Rio Doce basin.

References

Agência Nacional de Águas (2020). Sub bacias do rio Doce. Recuperado em 01 novembro, 2020, de https://www.snirh.gov.br/arcgis/rest/services/Doce/sub_bacias_rio_doce/MapServer

Albuquerque, J. A., Cassol, E. A., Reinert, D. J.(2000) Relação entre a erodibilidade em entressulcos e estabilidade dos agregados. Revista Brasileira de Ciência do Solo, 24(1), 141-151.

Arnoldus, H. M. J. (1980) An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. In: De Boodt, M. and Gabriels, D., Eds., Assessment of Erosion, John Wiley and Sons, New York, 127-132.

Bagio, B., Bertol, I., Wolschick, N. H., Schneiders, D., & dos Santos, M. A. do N. (2017). Water erosion in different slope lengths on bare soil. Revista Brasileira de Ciencia Do Solo, 41, 1–15. https://doi.org/10.1590/18069657rbcs20160132

Barbosa, F. T., Bertol, I., Luciano, R. V., González, A. P., & Vázquez, E. V. (2009). Soluble nitrogen content in runoff water from three forms of oat and vetch sowing. Revista Brasileira de Ciencia Do Solo, 33(2), 439–446. https://doi.org/10.1590/s0100-06832009000200021

Bhattarai, R., & Dutta, D. (2007). Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resources Management, 21(10), 1635–1647. https://doi.org/10.1007/s11269-006-9118-z

Consórcio ECOPLAN – LUME. (2010). Plano Integrado de Recursos Hídricos Da Bacia Do Rio Doce – PIRH Doce. Volume II Relatório Final. pp 21-22.

Correll, D.L. (1998), The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 27: 261-266. doi:10.2134/jeq1998.00472425002700020004x

Diodato, N., & Bellocchi, G. (2007). Estimating monthly (R) USLE climate input in a Mediterranean region using limited data. Journal of Hydrology, 345(3–4), 224–236. https://doi.org/10.1016/j.jhydrol.2007.08.008

ESRI. (2020). ArcGis Online. Recuperado em 01 novembro, 2020, de https://www.esri.com/en-us/arcgis/products/arcgis-online/overview.

Foster, G. R., Mccool, D. K., Renard, K. G., & Moldenhauer, W. C. (1981). Conversion of the universal soil loss equation to SI units. Journal of Soil and Water Conservation, v.36, p.p 355-359.

Gangadharan G. R, (2017) "Open Source Solutions for Cloud Computing," in Computer, vol. 50, no. 1, pp. 66-70, doi: 10.1109/MC.2017.20.

Gonçalves, A. (2005). O conceito de governança. XIV Encontro do Conpedi. 01 novembro, 2020, Recuperado de: http://conpedi.org.br/manaus/arquivos/anais/XIVCongresso/078.pdf

Guimarães, P. R. B. (2008). Métodos Quantitativos Estatísticos. IESDE Brasil S.A, 245. pp. 49-55.

Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486–494. https://doi.org/10.1016/j.catena.2015.04.009

Honglei H., & Wenming. W. (2020). Efficient, Customizable and Edge-Based WebGIS System. IEEE Access, 8, 126164–126177. https://doi.org/10.1109/ACCESS.2020.3007942

Howell R.G., Petersen S.L, Balzotti, C.S, Rogers P.C, Jackson M.W, & Hedrich A.E. (2019) Using WebGIS to Develop a Spatial Bibliography for Organizing, Mapping, and Disseminating Research Information: A Case Study of Quaking Aspen. The Society for Range Management. 41 (6). 244-247. doi 10.1016/j.rala.2019.10.001

Instituto BioAtlântica (2020) Relatório de Gestão do Exercício de 2019. Governador Valadares. p 22

Instituto Mineiro de Águas (2015). Relatório Hidrometereológico, período chuvoso 2014/2015. Minas Gerais. p.4

Jain, M., & KothyarI, U.. (2000). Estimation of soil erosion and sediment yield using GIS. Hydrological Sciences Journal. 45. 10.1080/02626660009492376.

Kenneth G. Renard, & Jeremy R. Freimund, (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE, Journal of Hydrology, Volume 157, Issues 1–4, , p.p 287-306,ISSN 0022-1694, https://doi.org/10.1016/0022-1694(94)90110-4.

Lee, J. H., & Heo, J. H. (2011). Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409(1–2), 30–48. https://doi.org/10.1016/j.jhydrol.2011.07.031

Mello, C. R., Sá, M. A. C., Curi, N., Mello, J. M., Viola, M. R., & Silva, A. M. (2007). Erosividade mensal e anual da chuva no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira, 42(4), 537–545. https://doi.org/10.1590/s0100-204x2007000400012

Mello, C.R., Viola, M.R., Curi, N., & Silva, A.M. (2012). Distribuição espacial da precipitação e da erosividade da chuva mensal e anual no Estado do Espírito Santo. Revista Brasileira de Ciência do Solo, 36(6), 1878-1891. https://dx.doi.org/10.1590/S0100-06832012000600022

Mooney P., & Juhász L. (2020). Mapping COVID-19: How web-based maps contribute to the infodemic. Dialogues in Human Geography Vol. 10(2) pp.265–270.

Moreira, M. C., Pruski F. F., Oliveira, T. E., Pinto, F. A., & Silva, D. D. (2009). Redes neurais artificiais para estimativa mensal da erosividade da chuva no Estado de Minas Gerais. Engenharia na Agricultura, Viçosa, MG, v.17, n.1, 75-83 Jan./Fev. https://doi.org/10.13083/1414-3984.v17n01a08

Morgan, R. P. C. (2005). Soil Erosion and Conservation, 3rd edition. Blackwell Publishing, Oxford.

Nunes, M. C. M., & Cassol, E. A. (2008). Estimativa da erodibilidade em entressulcos de Latossolos do Rio Grande do Sul. Revista Brasileira de Ciência do Solo, v. 32, número especial, p.p 2839-2845.

Nunes, M. C. M., Neves, S. M. A. S., Neves, R. J., Kreitlow, J. P., & Chimello, A. M. (2013). Susceptibility to water erosion of soils from the municipality Salto do Céu, SW Mato Grosso state, Brazil. Geografi a, 38, 191-206.

Risal, A., Bhattarai, R., Kum, D., Park, Y. S., Yang, J. E., & Lim, K. J. (2016). Application of Web ERosivity Module (WERM) for estimation of annual and monthly R factor in Korea. Catena, 147, 225–237. https://doi.org/10.1016/j.catena.2016.07.017

Rogers, P., & Hall, A. (2003). Effective Water Governance. Suécia: Global Water Partnership (GWP), TEC back- ground papers.

Rutebuka, J., De Taeye, S., Kagabo, D., & Verdoodt, A. (2020). Calibration and validation of rainfall erosivity estimators for application in Rwanda. Catena, 190(February), 104538. https://doi.org/10.1016/j.catena.2020.104538

Santos, C. (2008). N. El Niño, La Niña e a erosividade das chuvas no Estado do Rio Grande do Sul. Universidade Federal de Pelotas, Faculdade de Agronomia Eliseu Maciel, Programa de Pós-Graduação em Agronomia.

Universidade Federal de Viçosa (2008). netErosividade MG. Recuperado em: http://www.gprh.ufv.br/?area=softwares

Wagner, C. S., & Massambani, O. (1988). Análise da relação intensidade de chuva - energia cinética de wischmeier e smith e sua aplicabilidade a região de São Paulo. Revista Brasileira de Ciência do Solo, 12 (3), pp. 197-203

Wischmeier, W.H., & Smith, D.D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Washington: USDA, pp. 58.

Published

26/11/2020

How to Cite

BORGES, F. R. F. .; EZEZINOS, K. E. .; VIEIRA, E. M. . The rainfall erosivity on rio Doce basin cities of Minas Gerais, through the netErosividade MG software. Research, Society and Development, [S. l.], v. 9, n. 11, p. e55791110126, 2020. DOI: 10.33448/rsd-v9i11.10126. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10126. Acesso em: 19 apr. 2024.

Issue

Section

Exact and Earth Sciences