Synthesis of Polysulfone / Alumina hollow fiber membranes for water treatment in the presence of indigo blue dye

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.10863

Keywords:

Alumina; Polysulfone; Indigo blue; Effluents treatment.

Abstract

Motivated by technological and environmental needs, membrane separation processes have shown a great improvement over traditional techniques. These benefits encourage the application of membrane separations and stimulate development in purification and sterilization processes in the pharmaceutical and food industries in general. In addition, they are used in the water treatment for industrial or urban use, desalination, gas separation, clarification of juices, hemodialysis and in the effluents treatment. The latter is the application that this work is intended for, especially in the separation of water from textile dyes, i.e., indigo blue. Thus, polysulfone membranes were synthesized in the form of hollow fiber, with varying levels of alumina, for use in the effluents treatment. The morphological characteristics, hydrophilicity, flow measurements and the turbidity measurement of the prepared membranes were evaluated. The membranes were produced by the phase inversion method, via cold extrusion, immersion - precipitation. Filtration experiments indicate that alumina particles can increase the flow of water by improving the hydrophilicity of the membrane. By SEM images, a larger amount of pores, of smaller sizes, was verified with the insertion of alumina in the polysulfone. Thus, through the analysis of the Turbidimeter, the amount of indigo blue particles suspended in the membrane with alumina was smaller, since the pores are smaller and their greater quantity, generating a greater removal of the dye. Thus, with the increase in the alumina content, the separation between water and the indigo blue dye was improved.

References

Ahn, J., Chung, W. J., Pinnau, I., & Guiver, M. D. (2008). Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science, 314(1–2), 123–133. https://doi.org/10.1016/j.memsci.2008.01.031

Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science and Engineering R: Reports, 28(1), 1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

Anadão, P., Sato, L. F., Wiebeck, H., & Valenzuela-Díaz, F. R. (2010). Montmorillonite as a component of polysulfone nanocomposite membranes. Applied Clay Science, 48(1–2), 127–132. https://doi.org/10.1016/j.clay.2009.12.011

Barbosa Ferreira, R. da S., Salviano, A. F., Lima Oliveira, S. S., Araújo, E. M., Medeiros, V. da N., & Lira, H. de L. (2019). Treatment of effluents from the textile industry through polyethersulfone membranes. Water (Switzerland), 11(12). https://doi.org/10.3390/w11122540

Bertotto, R., Duarte, J., Santos, V. dos, Zeni, M., & Bergmann, C. P. (2018). Análise do comportamento de membranas cerâmicas de α-alumina/Pd para separação de gases a temperatura ambiente e baixas pressões. Cerâmica, 64(372), 477–484. https://doi.org/10.1590/0366-69132018643722338

Bidsorkhi, H. C., Riazi, H., Emadzadeh, D., Ghanbari, M., Matsuura, T., Lau, W. J., & Ismail, A. F. (2016). Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2nanocomposite membrane. Nanotechnology, 27(41). https://doi.org/10.1088/0957-4484/27/41/415706

Botvay, A., Máthé, Á., Pöppl, L., Rohonczy, J., & Kubatovics, F. (1999). Preparation and characterization of brominated polyethersulfones. Journal of Applied Polymer Science, 74(1), 1–13. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<1::AID-APP1>3.0.CO;2-7

Buruga, K., Song, H., Shang, J., Bolan, N., Jagannathan, T. K., & Kim, K.-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water. Journal of Hazardous Materials, 379, 120584. https://doi.org/10.1016/j.jhazmat.2019.04.067

Chen, J., Shen, L., Zhang, M., Hong, H., He, Y., Liao, B. Q., & Lin, H. (2016). Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control. Bioresource Technology, 201, 245–252. https://doi.org/10.1016/j.biortech.2015.11.063

Habert, A. C., Borges, C. P., & Nobrega, R. (2006). Processos de Separação por Membranas. In e-papers (1st ed.). Retrieved from 200.144.189.97/phd/LeArq.aspx?id_arq=4539

Homayoonfal, M., Mehrnia, M. R., Rahmani, S., & Mohades Mojtahedi, Y. (2015). Fabrication of alumina/polysulfone nanocomposite membranes with biofouling mitigation approach in membrane bioreactors. Journal of Industrial and Engineering Chemistry, 22, 357–367. https://doi.org/10.1016/j.jiec.2014.07.031

Jamshidi Gohari, R., Lau, W. J., Matsuura, T., & Ismail, A. F. (2013). Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Separation and Purification Technology, 118, 64–72. https://doi.org/10.1016/j.seppur.2013.06.043

Lenntech. (2019). Water treatment and air purification. Retrieved August 20, 2019, from https://www.lenntech.com/ceramic-membranes.htm

Maximous, N., Nakhla, G., Wan, W., & Wong, K. (2009). Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. Journal of Membrane Science, 341(1–2), 67–75. https://doi.org/10.1016/j.memsci.2009.05.040

Meksi, N., Kechida, M., & Mhenni, F. (2007). Cotton dyeing by indigo with the borohydride process: Effect of some experimental conditions on indigo reduction and dyeing quality. Chemical Engineering Journal, 131(1–3), 187–193. https://doi.org/10.1016/j.cej.2007.01.001

Mulder, M. (1991). Basic Principles of Membrane Technology. https://doi.org/10.1017/CBO9781107415324.004

Nakatsuka, S., Nakate, I., & Miyano, T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1–3), 55–61. https://doi.org/10.1016/S0011-9164(96)00092-6

Palacio, L., Calvo, J. I., Prádanos, P., Hernández, A., Väisänen, P., & Nyström, M. (1999). Contact angles and external protein adsorption onto UF membranes. Journal of Membrane Science, 152(2), 189–201. https://doi.org/10.1016/S0376-7388(98)00203-8

Rambabu, K., Bharath, G., Monash, P., Velu, S., Banat, F., Naushad, M., & Loke Show, P. (2019). Effective treatment of dye polluted wastewater using

nanoporous CaCl2 modified polyethersulfone membrane. Process Safety and Environmental Protection, 124, 266–278. https://doi.org/10.1016/j.psep.2019.02.015

Rodrigues, R., Mierzwa, J. C., & Vecitis, C. D. (2019). Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment. Journal of Water Process Engineering, 31(2), 100788. https://doi.org/10.1016/j.jwpe.2019.100788

Santos Filho, E. A. dos, Medeiros, K. M. de, Araújo, E. M., Ferreira, R. da S. B., Oliveira, S. S. L., & Medeiros, V. da N. (2019). Membranes of polyamide 6/clay/salt for water/oil separation. Materials Research Express, 6(10), 105313. https://doi.org/10.1088/2053-1591/ab3754

Tizchang, A., Jafarzadeh, Y., Yegani, R., & Khakpour, S. (2019). The effects of pristine and silanizes nanodiamond on the performance of polysulfone membranes for wastewater treatment by MRB system. Journal of Environmental Chemical Engineering, 7(6), 30. https://doi.org/https://doi.org/10.1016/j.jece.2019.103447

Turken, T., Sengur-Tasdemir, R., Ates-Genceli, E., Tarabara, V. V., & Koyuncu, I. (2019). Progress on reinforced braided hollow fiber membranes in separation technologies: A review. Journal of Water Process Engineering, 32(May), 100938. https://doi.org/10.1016/j.jwpe.2019.100938

Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., & Astinchap, B. (2011). Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. Journal of Membrane Science, 375(1–2), 284–294. https://doi.org/10.1016/j.memsci.2011.03.055

Xu, Y., Goh, K., Wang, R., & Bae, T. H. (2019). A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Separation and Purification Technology, 229(July), 115791. https://doi.org/10.1016/j.seppur.2019.115791

Yan, L., Li, Y. S., & Xiang, C. B. (2005). Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 46(18), 7701–7706. https://doi.org/10.1016/j.polymer.2005.05.155

Yuan, H. G., Liu, Y. Y., Liu, T. Y., & Wang, X. L. (2017). Self-standing nanofilms of polysulfone doped with sulfonated polysulfone via solvent evaporation for forward osmosis. Journal of Membrane Science, 523, 567–575. https://doi.org/10.1016/j.memsci.2016.09.034

Published

07/01/2021

How to Cite

SILVA , A. F. P. da .; ARAÚJO , E. M. .; LIRA, H. de L. .; FERREIRA, R. da S. B. .; MEDEIROS, V. da N. .; OLIVEIRA, S. S. L. . Synthesis of Polysulfone / Alumina hollow fiber membranes for water treatment in the presence of indigo blue dye. Research, Society and Development, [S. l.], v. 10, n. 1, p. e18610110863, 2021. DOI: 10.33448/rsd-v10i1.10863. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10863. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings