Influence of recyclable materials and sugar cane vinasse on the mechanical strength of ecological bricks
DOI:
https://doi.org/10.33448/rsd-v10i2.12911Keywords:
Adobe; Argisol; Oxisol; PET; EPS; Mechanical compression.Abstract
The construction industry uses abundant non-renewable raw materials, consumes large amounts of energy in the extraction of inputs, in the production of materials, in the transport of both and generates an infinity of rubble in the execution of the works. Ecological adobe bricks can be manufactured using non-toxic urban waste, including civil construction. This work aimed to describe the manufacturing process and the structural characterization of ecological bricks of the adobe type using as a matrix the argisol and the oxisol, and as a binder, recyclable materials from the selective urban collection (PET and EPS), plaster discarded by the civil construction and the vinasse from the sugarcane industry. Studies were carried out on the manufacturing process of ecological brick prototypes and on the mechanical characterization water absorption, dry density, resistance to mechanical compression; stress/strain behavior, mass behavior/compressive strength. The results showed that the excessive inclusion of recyclable materials in the manufacture of adobes promotes an increase in mechanical resistance, but also increases the absorption of water in a way that does not meet the regulation of the Brazilian standard that provides for the solid brick of soil-cement. The most promising bricks were those made with 55 and 39.5% recyclable materials for the argisol and oxisol respectively.
References
AASTHO. (2008). Mechanistic-Empirical Pavement Design Guide. Washington, DC: American Association of State Highway and Transportation Officials.
ABCP. (2000). Fabricação de tijolos de solo-cimento com a utilização de prensas manuais. São Paulo: Associação Brasileira de Cimento Portland.
ABNT NBR-8492. (2013). Soil-cement brick — Dimensional analysis, compressive strength determination and water absorption — Test method. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR-13292. (1995). Soil - Determination of the coefficient of permeability of granular soil by constant-head - Method of test. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR-6459. (2017). Soil- Liquid limit determination. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR-7180. (2016). Soil — Plasticity limit determination. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR-7182. (2020). Soil - Compaction test. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NBR-8491. (2012). Soil-cement brick — Requirements. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
ABNT NM-248. (2003). Aggregates - Sieve analysis of fine and coarse aggregates. Rio de Janeiro: Associação Brasileira de Normas Técnicas.
Agopyan, V., Savastano, H., John, V. M., & Cincotto, M. A. (2005). Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 27(5), 527–536. https://doi.org/10.1016/j.cemconcomp.2004.09.004
Agopyan, V., & John, V. M. (2016). O desafio da sustentabilidade na construção civil (3th ed., Vol. 5). São Paulo: Blucher.
Ajayi, B. (2017). An assessment of environmental and sustainability provisions in trade agreements. University of Waterloo, Ontario, Canada. https://doi.org/10.1177/0309133309346882
Ali, Y. A. Y., Fahmy, E. H. A., AbouZeid, M. N., Shaheen, Y. B. I., & Mooty, M. N. A. (2020). Use of expanded polystyrene in developing solid brick masonry units. Construction and Building Materials, 242, 118109. https://doi.org/10.1016/j.conbuildmat.2020.118109
Barbosa, M. I. R., Amorim, L. V., & Ferreira, H. C. (2007). Compostos poliméricos como aditivos de argilas bentoníticas. Cerâmica, 53(328), 354–360. https://doi.org/10.1590/S0366-69132007000400004
Brito, L. C., & Paranhos, H. da S. (2017). Estabilização de Solos. Revista Científica Multidisciplinar Núcleo Do Conhecimento, 1(2), 425–438.
Callister Jr., W. D., & Rethwisch, D. G. (2012). Ciência e engenharia de materiais: Uma introdução. (Sergio Murilo S. Soares, Trans.) (V.8). Rio de Janeiro: John Wiley & Soons.
Construction & Demolition Recycling Association. (2020). Collaborate. Innovate. Advance. Recuperado de: https://cdrecycling.org/about/
Conselho Nacional do Meio Ambiente, C. Resolução CONAMA no 307, de 5 de julho de 2002. Alterada pela Resolução no 348/04 (alterado o inciso IV do art. 3o). Estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil (2002). Brasil. Recuperado de https://www.mma.gov.br/estruturas/a3p/_arquivos/36_09102008030504.pdf
Corazza, R. I., & Salles-Filho, S. (2014). Vinasse treatment in Brazil from 1970s to 1990s: a lock-in case study into the ethanol agroindustry. Análise Econômica, 32(62). https://doi.org/10.22456/2176-5456.20928
Cordeiro, L. de N. P., Masuero, A. B., Molin, D. C. C. D., Souza, P. S. L., & Paes, I. N. L. (2017). Influence of the mixing processes in concrete with aggregates coarse recycled concrete. Ambiente Construído, 17(3), 255–265. https://doi.org/10.1590/s1678-86212017000300174
Fabbri, A., & Morel, J. C. (2020). Earthen materials and constructions. In Nonconventional and Vernacular Construction Materials (pp. 375–401). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102704-2.00014-7
Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). A geotechnical perspective of raw earth building. Acta Geotechnica, 12(3), 463–478. https://doi.org/10.1007/s11440-016-0521-1
Harries, K. A., & Sharma, B. (2020). Nonconventional and vernacular construction materials: Characterisation, properties and applications (Vol. 2). Duxford, United Kingdom: Elsevier Ltd. Retrieved from https://books.google.com.br/books?id=geu-DwAAQBAJ&pg=PA399&lpg=PA399&dq=Lei,+X.,+et+al.,+2014.+A+thermo-chemo-electro-mechanical+framework+of+unsaturated+expansive+clays.+Comput.+Geotech.+62,+175e192&source=bl&ots=A0FOPMEXAM&sig=ACfU3U0esjYSTsm1UvGwyts4NS
Huarachi, D. A. R., Gonçalves, G., de Francisco, A. C., Canteri, M. H. G., & Piekarski, C. M. (2020). Life cycle assessment of traditional and alternative bricks: A review. Environmental Impact Assessment Review, 80 (September 2019), 106335. https://doi.org/10.1016/j.eiar.2019.106335
Klang, A., Vikman, P.-Å., & Brattebø, H. (2003). Sustainable management of demolition waste—an integrated model for the evaluation of environmental, economic and social aspects. Resources, Conservation and Recycling, 38(4), 317–334. https://doi.org/10.1016/S0921-3449(02)00167-2
Lima Jr., H. C., Willrich, F. L., & Barbosa, N. P. (2003). Structural behavior of load bearing brick walls of soil-cement with the addition of ground ceramic waste. Revista Brasileira de Engenharia Agrícola e Ambiental, 7(3), 552–558.
Nadoushani, Z. S. M., & Akbarnezhad, A. (2015). Effects of structural system on the life cycle carbon footprint of buildings. Energy and Buildings, 102, 337–346. https://doi.org/10.1016/j.enbuild.2015.05.044
Oh, B. K., Park, J. S., Choi, S. W., & Park, H. S. (2016). Design model for analysis of relationships among CO2 emissions, cost, and structural parameters in green building construction with composite columns. Energy and Buildings, 118, 301–315. https://doi.org/10.1016/j.enbuild.2016.03.015
Rolim, M. M. (1996). Avaliaçao físico-mecânica do material solo-vinhaça concentrada e sua utilizaçao para fins de fabricaçao de tijolos. Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
Santos, M. P. dos. (2009). Fabricação de solo-cimento com adição de resíduos de madeira provenientes da construção civil. Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
Seixas, F. L., Gimenes, M. L., & Fernandes-Machado, N. R. C. (2016). Treatment of vinasse by adsorption on carbon from sugar cane bagasse. Química Nova, XY(200), 1–8. https://doi.org/10.5935/0100-4042.20160013
Sena, R. J. De, Laursen, A., & Silva, J. S. da. (2017). Mechanical evaluation of solid soil-cement brick containing PET residue. Veredas MPCT, 10(1), 69–83.
Silva, S. R. da. (2005). Tijolos de solo cimento reforçado com serragem de madeira. Universidade Federal de Minas Gerais, Belo Horizonte, MG.
Silva Filho, A. F. e. (2005). Gestão dos resíduos sólidos das contruções prediais na cidade do Natal-RN. Universidade Federal do Rio Grande do Norte, Natal, Brasil. Retrieved from http://repositorio.ufrn.br:8080/jspui/handle/123456789/14974
Soares, A. P., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM.
Valenciano, M. D. C. M., & Freire, W. J. (2004). Características físicas e mecânicas de misturas de solo, cimento e cinzas de bagaço de cana-de-açúcar. Eng. Agríc, 24(3), 484–492. https://doi.org/10.1002/0471478768.ch13
Walker, P. J. (1994). Properties of stabilized soil blocks. In 5th International Seminar on Structural Mansory for Developing Countries. Florianópolis, SC, Brasil.
Zhang, Z., Wong, Y. C., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maria Eunice Carvalho Tosello; Jacqueline Roberta Tamashiro; Lucas Henrique Pereira Silva; Patricia Alexandra Antunes; Rebeca Delatore Simões
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.