The performance of phototherapy in angiogenesis and tissue repair
DOI:
https://doi.org/10.33448/rsd-v10i3.13334Keywords:
Phototherapy; Neovascularization, physiologic; Wound healing.Abstract
Wound healing is a complex process, composed of several interdependent and simultaneous stages to repair the tissue and, among the methods used, laser therapy has biological and regenerative stimulatory effects. The aim of this review is to understand the mechanism of action of laser therapy in tissue repair and, more specifically, angiogenesis. A bibliographic search was performed in the databases PUBMED, LILACS and SCIELO on the subject, using the following keywords: "phototherapy and angiogenesis" and "phototherapy and wound healing". In this search, 3634 articles were totaled, which after analysis of the criteria, 3624 were excluded, remaining 10 papers. In view of the above, it can be concluded that laser therapy has been presented as a therapeutic alternative in tissue repair, acting as a photobiomodulator, with analgesic, anti-inflammatory, anti-edema and antimicrobial effects, offering improvements in cellular response mechanisms and presenting advantages in the three stages of the healing process.
References
Alster, T. S., & Wanitphakdeedecha, R. (2009). Improvement of postfractional laser erythema with light-emitting diode photomodulation. Dermatologic surgery: official publication for American Society for Dermatologic Surgery, 35(5), 813–815. https://doi.org/10.1111/j.1524-4725.2009.01137.x
Andrade, F., Clark, R. M., & Ferreira, M. L. (2014). Effects of low-level laser therapy on wound healing. Revista do Colegio Brasileiro de Cirurgioes, 41(2), 129–133. https://doi.org/10.1590/s0100-69912014000200010
Arany, P. R., Nayak, R. S., Hallikerimath, S., Limaye, A. M., Kale, A. D., & Kondaiah, P. (2007). Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 15(6), 866–874. https://doi.org/10.1111/j.1524-475X.2007.00306.x
Carvalho, P., Silva, I. S., Reis, F. A., Perreira, D. M., & Aydos, R. D. (2010). Influence of ingaalp laser (660nm) on the healing of skin wounds in diabetic rats. Acta cirurgica brasileira, 25(1), 71–79. https://doi.org/10.1590/s0102-86502010000100016
Chaves, M. E., Araújo, A. R., Piancastelli, A. C., & Pinotti, M. (2014). Effects of low-power light therapy on wound healing: LASER x LED. Anais brasileiros de dermatologia, 89(4), 616–623. https://doi.org/10.1590/abd1806-4841.20142519
Chaves, M. E. A., Silva, F. S. D., Soares, V. P. C., Ferreira, R. A. M., Gomes, F. S. L., Andrade, R. M., & Pinotti, M. (2015). Evaluation of healing of pressure ulcers through thermography: a preliminary study. Res Biomed Eng, 31 (1), 3-9. https://doi.org/10.1590/2446-4740.0571
Colombo, F., Neto, A., Sousa, A. P., Marchionni, A. M., Pinheiro, A. L., & Reis, S. R. (2013). Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Brazilian dental journal, 24(4), 308–312. https://doi.org/10.1590/0103-6440201301867
Corazza, A. V., Jorge, J., Kurachi, C., & Bagnato, V. S. (2007). Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomedicine and laser surgery, 25(2), 102–106. https://doi.org/10.1089/pho.2006.2011
Cury, V., Moretti, A. I., Assis, L., Bossini, P., Crusca, J., Neto, C. B., Fangel, R., de Souza, H. P., Hamblin, M. R., & Parizotto, N. A. (2013). Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. Journal of photochemistry and photobiology. B, Biology, 125, 164–170. https://doi.org/10.1016/j.jphotobiol.2013.06.004
Dall Agnol, M. A., Nicolau, R. A., de Lima, C. J., & Munin, E. (2009). Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers in medical science, 24(6), 909–916. https://doi.org/10.1007/s10103-009-0648-5
Damante, C., Marques, M., & De Micheli, G. (2010) Terapia com laser em baixa intensidade na cicatrização de feridas-revisão de literatura. RFO - UPF, 13 (3), 88 – 93.
Fantinati, M. S., Mendonça, D. E. O., Fantinati, A. M. M., Barbosa, D. A., Araújo, L. C., Afonso, C. L., Vinaud, M. C., & Lino Júnior, R. S.(2016). Activity of low level laser therapy on burning wounds in diabetic rats. Rev bras queimaduras, 15 (1): 42-9.
Feitosa, M. C., Carvalho, A. F., Feitosa, V. C., Coelho, I. M., Oliveira, R. A., & Arisawa, E. Â. (2015). Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers. Acta cirurgica brasileira, 30(12), 852–857. https://doi.org/10.1590/S0102-865020150120000010
Fiório, F. B., Silveira, L., Jr, Munin, E., de Lima, C. J., Fernandes, K. P., Mesquita-Ferrari, R. A., de Carvalho, P., Lopes-Martins, R. A., Aimbire, F., & de Carvalho, R. A. (2011). Effect of incoherent LED radiation on third-degree burning wounds in rats. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology, 13(6), 315–322. https://doi.org/10.3109/14764172.2011.630082
Fushimi, T., Inui, S., Nakajima, T., Ogasawara, M., Hosokawa, K., & Itami, S. (2012). Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 20(2), 226–235. https://doi.org/10.1111/j.1524-475X.2012.00771.x
Gonçalves, R. V., Mezêncio, J. M., Benevides, G. P., Matta, S. L., Neves, C. A., Sarandy, M. M., & Vilela, E. F. (2010). Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 43(4), 350–355. https://doi.org/10.1590/S0100-879X2010007500022
Gonçalves, R. V., Novaes, R. D., Cupertino, M., Moraes, B., Leite, J. P., Peluzio, M., Pinto, M. V., & da Matta, S. L. (2013). Time-dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers in medical science, 28(2), 383–390. https://doi.org/10.1007/s10103-012-1066-7
Huang, P. J., Huang, Y. C., Su, M. F., Yang, T. Y., Huang, J. R., & Jiang, C. P. (2007). In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomedicine and laser surgery, 25(3), 183–190. https://doi.org/10.1089/pho.2007.2062
Hussein, A. J., Alfars, A. A., Falih, M. A., & Hassan, A. N. (2011). Effects of a low level laser on the acceleration of wound healing in rabbits. North American journal of medical sciences, 3(4), 193–197. https://doi.org/10.4297/najms.2011.3193
Iryanov Y. M. (2016). Influence of Laser Irradiation Low Intensity on Reparative Osteogenesis and Angiogenesis Under Transosseous Osteosynthesis. Journal of lasers in medical sciences, 7(3), 134–138. https://doi.org/10.15171/jlms.2016.23
Leite, S. N., Andrade, T. A., Masson-Meyers, D., Leite, M. N., Enwemeka, C. S., & Frade, M. A. (2014). Phototherapy promotes healing of cutaneous wounds in undernourished rats. Anais brasileiros de dermatologia, 89(6), 899–904. https://doi.org/10.1590/abd1806-4841.20143356
Lim, W. B., Kim, J. S., Ko, Y. J., Kwon, H., Kim, S. W., Min, H. K., Kim, O., Choi, H. R., & Kim, O. J. (2011). Effects of 635nm light-emitting diode irradiation on angiogenesis in CoCl(2) -exposed HUVECs. Lasers in surgery and medicine, 43(4), 344–352. https://doi.org/10.1002/lsm.21038
Matos, F. S., Godolphim, F. J., Albuquerque-Júnior, R. L., Paranhos, L. R., Rode, S. M., Carvalho, C. A., & Ribeiro, M. A. (2018). Laser phototherapy induces angiogenesis in the periodontal tissue after delayed tooth replantation in rats. Journal of clinical and experimental dentistry, 10(4), e335–e340. https://doi.org/10.4317/jced.54499
Martins, S. S., Torres, O. J., Santos, O. J., Limeira Júnior, F., Sauaia Filho, E. N., Melo, S. P., Santos, R. H., & Silva, V. B. (2015). Analysis of the healing process of the wounds occurring in rats using laser therapy in association with hydrocolloid. Acta cirurgica brasileira, 30(10), 681–685. https://doi.org/10.1590/S0102-865020150100000005
Melo, V. A., Anjos, D. C., Albuquerque Júnior, R., Melo, D. B., & Carvalho, F. U. (2011). Effect of low level laser on sutured wound healing in rats. Acta cirurgica brasileira, 26(2), 129–134. https://doi.org/10.1590/s0102-86502011000200010
Mendonça, R. J., & Coutinho-Netto, J. (2009). Cellular aspects of wound healing. Anais brasileiros de dermatologia, 84(3), 257–262. https://doi.org/10.1590/s0365-05962009000300007
Moura, R. O., Nunes, L. C. C., Carvalho, M. E. M., & Miranda, B. R. (2014). Efeitos da luz emitida por diodos (LED) e dos compostos de quitosana na cicatrização de feridas. Revisão Sistemática. Rev ciênc farm básica apl, 35 (4), 513-518.
Pereira, M. C., de Pinho, C. B., Medrado, A. R., Andrade, Z., & Reis, S. R. (2010). Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. Journal of photochemistry and photobiology. B, Biology, 98(3), 188–192. https://doi.org/10.1016/j.jphotobiol.2009.12.005
Pereira A. S., Shitsuka D. M., Shitsuka F. J. P. R. (2018). Metodologia da pesquisa científica.
Pinheiro, A. L., Meireles, G. C., Carvalho, C. M., Ramalho, L. M., & dos Santos, J. N. (2009). Biomodulative effects of visible and IR laser light on the healing of cutaneous wounds of nourished and undernourished Wistar rats. Photomedicine and laser surgery, 27(6), 947–957. https://doi.org/10.1089/pho.2009.2607
Ribeiro, M. S., Núñez, S. C., Sabino, C. P., Yoshimura, T. M., Silva, C. R., Nogueira, G. E. C., Suzuki, H., & Garcez, A. S. (2015) Exploring light-based technology for wound healing and appliance disinfection. J Braz Chem Soc, 26 (12), 2583-9.https://dx.doi.org/10.5935/0103-5053.20150253
Sawasaki, I., Geraldo-Martins, V. R., Ribeiro, M. S., & Marques, M. M. (2009). Effect of low-intensity laser therapy on mast cell degranulation in human oral mucosa. Lasers in medical science, 24(1), 113–116. https://doi.org/10.1007/s10103-007-0531-1
Sousa, R. C., Maia Filho, A. L., Nicolau, R. A., Mendes, L. M., Barros, T. L., & Neves, S. M. (2015). Action of AlGaInP laser and high frequency generator in cutaneous wound healing. A comparative study. Acta cirurgica brasileira, 30(12), 791–798. https://doi.org/10.1590/S0102-865020150120000001
Tacon, K. C., Santos, H. C., Parente, L. M., Cunha, L. C., Lino-Júnior, R., Ribeiro-Rotta, R. F., Tacon, F. S., & Amaral, W. N. (2011). Healing activity of laser InGaAlP (660nm) in rats. Acta cirurgica brasileira, 26(5), 373–378. https://doi.org/10.1590/s0102-86502011000500008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Alieny Cristina Duarte Ferreira; Ana Luzia Araújo Batista; Maria Helena Chaves de Vasconcelos Catão
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.