Palm trees limit the proliferation of lianas in the forests of the Amazon-Cerrado-Pantanal ecotone

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13547

Keywords:

Transition; Biomes; Creepers; Forests; Way of life.

Abstract

Palm trees have structural characteristics that limit their colonization by lianas (e.g., rapid growth, flexible monopodial stem and deciduous leaves). The objective of our study was to evaluate whether the presence of palm trees can influence the plant infestation by lianas in three forest communities (FG, FS1 and FS2) of the Estação Ecológica da Serra das Araras (EESA), the only transition space between three biomes in Brazilian territory. In each forest we allocate a permanent plot of 1 ha, sampling trees and palm trees with DBH ≥ 10 cm, assigning a binary classification as to the presence or absence of vines in individuals, as well as calculating the average rates of infestation by lianas and occupation by palm trees. In all, we registered 1,557 individuals, distributed in 41 families and 147 species. We counted 682 infested plants and 875 free of lianas in a total of 1,063 trees and 494 palms, with 73% of the infested plants being trees. The presence of palm trees limited the proliferation of lianas in our areas. Trees were more vulnerable to liana infestation than palm trees and the favorable condition for their massive colonization was that in which the palm occupation rate reached 23% per hectare. We found that the way of life substantially influences plant infestation in the Amazon-Cerrado-Pantanal ecotone, being the largest infestation observed among low trees. We conclude that the rate of infestation tends to decrease due to the increase in the density of palm trees.

References

Boyle, B., Hopkins, N., Lu, Z, Garay, J. A. R., Mozzherin, D., Rees, T., Matasci, N., Narro. M. L., Piel, W. H., McKay, S. J., Lowry, S., Freeland, C., Peet, R. K., & Enquist, B. J. (2013). The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics, 14(16), 1-14.

Brasília (2016). Plano de Manejo da Estação Ecológica da Serra das Araras. Ministério do Meio Ambiente. Brasília, 252 pp.

Campbell, E. J. F., & Newbery, D. M. (1993). Ecological relationships between lianas and trees in lowland rain forest in Sabah, East Malaysia. Journal of Tropical Ecology, 9, 469-490.

Campbell, M., Magrach A., Laurance W. F. (2015) Liana Diversity and the Future of Tropical Forests. In: Parthasarathy N. (eds) Biodiversity of Lianas. Sustainable Development and Biodiversity, 5, 255-274.

Cox, C. J., Edwards, W., Campbell, M. J., Laurance, W. F., Laurance, S. G. W. (2019). Liana cover in the canopies of rainforest trees is not predicted by local. Austral Ecology, 44, 759-767.

Emilio, T., Quesada, C. A., Costa, F. R. C., Magnusson, W. E. et al. (2014). Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology & Diversity, 7(1-12), 215–229.

Flora do Brasil (2020). Jardim Botânico do Rio de Janeiro. Disponível em: < http://floradobrasil.jbrj.gov.br/ >. Acesso em: 27 nov. 2020.

French, K., Robinson, S. A., Smith, L., Watts, E. (2017). Facilitation, competition and parasitic facilitation amongst invasive and native liana seedlings and a native tree seedling. NeoBiota, 36, 17–38.

Ingwell, L. L., Wright, S. J., Becklund, K. K., Hubbell, S. P., Schnitzer, S. A. (2010). The impact of lianas on 10 years of the growth and mortality on Barro Colorado Island, Panama. Journal of Ecology, 98, 879-887.

Laurance, W. F., Andrade, A. S., Magrach, A., Camargo, J. L. C. et al. (2014). Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology, 95, 1604–1611.

Mascaro, J., Schnitzer, S. A., Carson, W. P. (2004). Liana diversity, abundance, and mortality in a tropical wet forest in Costa Rica. Forest Ecology and Management, 190, 3–14.

Oksanen, L., Blanchet, F. G., Friendly, M. et al. (2019). Package ‘vegan’: Community Ecology Package. R package version 2.5-5.

Oliveira, E. A., Marimon, B. S., Feldpausch, T. R., Colli, G. R. et al. (2014). Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology & Diversity, 7, 231–240.

Plano de Conservação da Bacia do Alto Paraguai (Pantanal) - PCBAP: Análise integrada e prognóstico da Bacia do Alto Paraguai. Brasília, 1997. v.3 369p., anexos. Programa Nacional do Meio Ambiente. Projeto Pantanal.

Pérez-Salicrup, D. R., Sork, V. L., Putz, F. E. (2001). Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica, 33, 34-47.

Pérez-Salicrup, D. R. & Meijere, W. (2005). Number of Lianas per Tree and Number of Trees Climbed by Lianas at Los Tuxtlas, Mexico. Biotropica, 37(1), 153–156.

Phillips, O. L., Martínez, R. V., Mendoza, A. M. (2005). Large lianas as hyperdinamic elements of the tropical forest canopy. ESA, 86(5), 1250-1258.

Phillips, O., Vásquez Martínez, R., Arroyo, L. et al. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418(6899), 770–774.

Phillips, O., Baker, T., Feldpausch, T., Brienen, R. (2016). RAINFOR: field manual for plot establishment and remeasurement. The Royal Society, Leeds, UK.

Putz, F. E. (1984). How Trees Avoid and Shed Lianas. Biotropia, 16(1), 19-23.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Reis, S. M., Marimon, B. S., Morandi, P. S. et al. (2020). Causes and consequences of liana infestation in Southern Amazonia. Journal of Ecology, 108, 2184–2197.

Reid, J. P., Schnitzer, S. A., Powers, J. S. (2015). Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest. PLoS ONE, 10, e0141891.

Ribeiro, J. F., Walter, B. M. T. (2008). As principais fitofisionomias do Bioma Cerrado. In Cerrado: ecologia e flora (S.M. Sano, S.P. Almeida & J.F. Ribeiro, eds.). Embrapa Cerrados, Planaltina. p.151 -212.

Rich, P. M. (1987). Mechanical structure of the stem of arborescent palms. Bot. Gaz., 148(1), 42-50.

Rizzini, C. T. (1978). Árvores e madeiras uteis do Brasil: manual de dendrologia brasileira. São Paulo: 2ªed. Editora Edgard Blücher, 166pp.

Sfair, J. C., Ribeiro, B. R., Pimenta, E. P., Gonçalves, T., Ramos, F. N. (2013). A importância da luz na ocupação de árvores por lianas. Rodriguésia, 64(2), 255-261.

Sfair, J. C., Rochelle, A. L. C., Rezende, A. A., Melis, J. V., Burnham, R. J., Weiser, V. de L., Martins, F. R. (2016). Liana avoidance strategies in trees: combined attributes increase efficiency. Tropical Ecology, 57(3), 559-566. ISSN 0564-3295.

Schnitzer, S. A., Bongers, F. (2002). The ecology of lianas and their role in forests. TRENDS in Ecology & Evolution, 17(5), 223-230.

Scaranello, M. A. S., Castro, B. S., Farias, R. A., Vieira, S. A., Alves, L. F., Robortella, H. S., Aragão, L. E. O. C. (2016). The role of stand structure and palm abundance in predicting above-ground biomass at local scale in southern Amazonia. Plant Ecology & Diversity, 9(4), 409-420.

Thomas, D., Burnham, R. J., Chuyong, G., Kenfack, D., Sainge, M. N. (2015). Liana abundance and diversity in Cameroon’s Korup National Park. Ecology of Lianas, 1, 11-22.

Tymen, B., Réjou‐Méchain, M., Dalling, J. W., Fauset, S. (2016). Evidence for arrested succession in a liana-infested Amazonian forest. Journal of Ecology, 104, 149–159.

Uwalaka, N. O., Khapugin, A. A., Muoghalu, J. I. (2020). Effect of some environmental factors on liana abundance in a regenerating secondary lowland rainforest in Nigeria three decades after a ground fire. Ecological Questions, 31(2), 27–38.

Valadão, R. M. (2012). As aves da Estação Ecológica Serra das Araras, Mato Grosso, Brasil. Biota Neotrop. 12(3), 263-281.

Van der Heijden, G. M. F., Phillips, O. L. (2008). What controls liana success in Neotropical forests? Global Ecol. Biogeogr., 17(3), 372–383.

Van Der Heijden, G. M. F., Phillips, O. L. (2009). Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences, 6(10), 2217–2226.

Van Der Heijden, G. M. F., Feldpausch, T. R., Herrero, A. F., Van Der Velden, N. K., Phillips, O. L. (2010). Calibrating the liana crown occupancy index in a Amazonian forests. Forest Ecology and Management, 260(4), 549-555.

Van Der Heijden, G. M. F., Powers, J. S., Schnitzer, S. A. (2015). Lianas reduce carbon accumulation and storage in tropical forests. PNAS, 112(43), 13267–13271.

Veloso, H. P. (1946). Considerações gerais sobre a vegetação do estado de Mato Grosso. II- Notas preliminares sobre o Pantanal e zonas de transição. Memórias do Instituto Oswaldo Cruz, 45(1), 253-272.

Walter, B. M. T.; Fagg, C. W. Coleta, preparo e documentação de material botânico testemunho. In: Eisenlohr, P. V.; Felfili, M. J.; Melo, M. M. R. F.; Andrade, L. A.; Neto, J. A. M. N. Fitossociologia no Brasil: Métodos e estudos de casos. 1º ed. Viçosa, MG: Editora UFV, p.13–30, 2013.

Zar, J. H. (2010). Biostatistical analysis. 5.ed. Upper Saddle River, NJ: Pearson Prentice-Hall, 944 p. (Prentice-Hall Biological Sciences Series).

Published

23/03/2021

How to Cite

MORAES, M. F. de; CRUZ, W. J. A. da; OLIVO-NETO, A. M.; PIERANGELI, . M. A. P.; LEMES, S. A. de L.; OLIVERAS-MENOR, I.; CARNIELLO, M. A. Palm trees limit the proliferation of lianas in the forests of the Amazon-Cerrado-Pantanal ecotone. Research, Society and Development, [S. l.], v. 10, n. 3, p. e48310313547, 2021. DOI: 10.33448/rsd-v10i3.13547. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13547. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences