Xenogenic bone grafting biomaterials do not interfere in the viability and proliferation of stem cells from human exfoliated deciduous teeth - an in vitro pilot study

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.14249

Keywords:

Stem cells; Biomaterials; Dental pulp.

Abstract

Aim: In vitro evaluation of the influence of bovine xenogenic biomaterials on stem cells from human exfoliated deciduous teeth (SHEDs). The study was divided into three groups: 1) group C (control), containing only MSCs; 2) group BP, containing MSCs and Bonefill Porous®; 3) group BO, containing MSCs and Bio-Oss®. MSCs were derived from a deciduous tooth from a 7-year-old male donor. An aliquot of cells was subjected to immunophenotyping by flow cytometry. Cell viability (neutral red), cytotoxicity (MTT), and cell proliferation (crystal violet) assays were performed. All groups underwent morphological analysis by light microscopy (LM), and the biomaterial with superior performance was submitted to evaluation by scanning electron microscopy (SEM). Time points of 24, 48, and 72 h of culture were used. All results were evaluated with a significance level of 0.05. Results showed that both biomaterials maintained cell viability and cytotoxicity similar to the control. The BO group showed smaller cell proliferation compared to the other groups. In LM evaluation, the BP group showed more spread and adherent cells than the BO group. In SEM, cells of the BP group showed characteristics of more active cells than those of the control. Bovine xenogenic biomaterials positively influenced SHEDs, while the BP group seemed to present higher potential with SHEDs for future application within in vivo and/or clinical studies.

References

Amini A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012).Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 40(5):363-408. doi:10.1615/critrevbiomedeng.v40.i5.10.

Chiba, K., Kawakami K., & Tohyama, K. (1998). Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro. 12(3):251-258. doi:10.1016/s0887-2333(97)00107-0.

Dahake, P. T., Panpaliya, N. P., Kale, Y. J., Dadpe, M. V., Kendre, S. B., & Bogar, C. (2020). Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials - An in vitro experimental study. Saudi Dent J. 2020 Jan;32(1):43-51. doi: 10.1016/j.sdentj..05.005.

Dominici, M., Le Blanc, K., & Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for CellularTherapy position statement. Cytotherapy;8(4):315-317. doi:10.1080/14653240600855905.

Gomez, P. M., Fourcade, L., Mateescu, M. A., &. Paquin, J. (2017). Neutral Red versus MTT assay of cell viability in the presence of copper compounds. Anal Biochem. 535:43-46. doi:10.1016/j.ab.2017.07.027.

Hämmerle, C. H., Lang, N. P. (2001). Single stage surgery combining transmucosal implant placement with guided bone regeneration and bioresorbable materials. Clin Oral Implants Res. 12(1):9-18. doi:10.1034/j.1600-0501.2001.012001009.x.

Hendijani, F. (2017). Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif.;50(2):e12334. doi:10.1111/cpr.12334.

Hosseini, F. S., Soleimanifar, F., & Ardeshirylajimi, A., et al. (2019). In vitro osteogenic differentiation of stem cells with different sources on composite scaffold containing natural bioceramic and polycaprolactone. Artif Cells NanomedBiotechnol. 47(1):300-307. doi:10.1080/21691401.2018.1553785.

Jensen, T., Schou, S., Stavropoulos, A., Terheyden, H., Holmstrup, P. (2012). Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft: a systematic review. Clin Oral Implants Res. 23(3):263-273. doi:10.1111/j.1600-0501.2011.02168.x.

Kunwong, N., Tangjit, N., Rattanapinyopituk, K., Dechkunakorn, S., Anuwongnukroh, N., Arayapisit, T., & Sritanaudomchai. H. (2021). Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth. Arch Oral Biol. 123:105041. doi: 10.1016/j.archoralbio.2021.105041.

Lü, L., Zhang, L., Wai, M. S., Yew, D. T., & Xu, J. (2012). Exocytosis of MTT formazan could exacerbate cell injury. Toxicol In Vitro. 26(4):636-644. doi:10.1016/j.tiv.2012.02.006.

Manfro, R., Fonseca, F. S., Bortoluzzi, M. C., & Sendyk, W. R. (2014). Comparative, Histological and Histomorphometric Analysis of Three Anorganic Bovine Xenogenous Bone Substitutes: Bio-Oss, Bone-Fill and Gen-Ox Anorganic. J Maxillofac Oral Surg. 13(4):464-470. doi:10.1007/s12663-013-0554-z.

Mosmann, T.(1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 16;65(1-2):55-63.

Parameswaran, S., & Verma, R. S. (2011). Scanning electron microscopy preparation protocol for differentiated stem cells. Anal Biochem. 416(2):186-190. doi:10.1016/j.ab.2011.05.032.

Rafatjou, R., Amiri, I., & Janeshin, A. (2018). Effect of Calcium-enriched Mixture (CEM) cement on increasing mineralization in stem cells from the dental pulps of human exfoliated deciduous teeth. J Dent Res DentClinDent Prospects. 12(4):233-237. doi:10.15171/jpid.2018.036.

Rasch, A., Naujokat, H., Wang, F., Seekamp, A., Fuchs, S., & Klüter, T. (2019). Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One. 14(6):e0218404. Published 2019 Jun 20. doi:10.1371/journal.pone.0218404.

Repetto G, del Peso A, Zurita J. L. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 3(7):1125-1131. doi:10.1038/nprot.2008.75.

Rosa, V., Dubey, N, Islam, I., Min, K. S., & Nör, J. E. (2016). Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering. Stem Cells Int.2016:5957806. doi:10.1155/2016/5957806.

Sakkas, A., Wilde, F., Heufelder, M., Winter, K., & Schramm, A. (2017). Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 3(1):23. doi:10.1186/s40729-017-0084-4.

Santos, V. L. P; Franco, C. R. C.; Wagner, R.; Silva, C. D.; Franco, C. C.; Wagner, R.; Silva, C. D.; Santos, G. F.; Cunha, R. S.; Stinghen, A. E. M.; Monteiro, L. M.; Bussade, J. E.; Budel, J. M.; &Messias-Reason, I. J. (2021). In vitro study after exposure to the aqueous extract of Piper amalago L. shows changes of morphology, proliferation, cytoskeleton and molecules of the extracellular matrix. Research, Society and Development, 10(4), e0110413289, doi:10.33448/rsd-v10i4.13289.

Shen, J. F., Sugawara, A., Yamashita, J., Ogura, H., & Sato, S. (2011). Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci. ;3(3):117-124. doi:10.4248/IJOS11044.

Trubiani, O., Scarano, A., & Orsini, G., et al. (2007). The performance of human periodontal ligament mesenchymal stem cells on xenogenic biomaterials. Int J ImmunopatholPharmacol. 20(1 Suppl 1):87-91. doi:10.1177/039463200702001s1711.

Vasilyev, A. V., Zorina, O. A., Magomedov, R. N., Bukharova, T. B., Fatkhudinova, N. L., Osidak, E. O., Domogatsky, S. P., Goldstein, D. V. (2018). Razlichiia tsitosovmestimosti kostno-plasticheskikh materialov iz ksenogennogo gidroksiapatita s mul'tipotentnymi mezenkhimal'nymi stromal'nymi kletkami, poluchennymi iz pul'py vypavshikh molochnykh zubov i podkozhnogo lipoaspirata [Differences in the cytocompatibility of bone-plastic materials from xenogeneic hydroxyapatite with stem cells from human exfoliated deciduous teeth and adipose tissue-derived mesenchymal stem cells]. Stomatologiia (Mosk). 97(3):7-13. Russian. doi: 10.17116/stomat20189737.

Wang, B., Guo, Y., & Chen, X., et al. (2018). Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Int J Nanomedicine. 13:7395-7408. Published 2018 Nov 12. doi:10.2147/IJN.S180859.

Wolf, M. T., Vodovotz, Y., Tottey, S., Brown, B. N., & Badylak, S. F. (2015). Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Eng Part C Methods. 21(2):148-159. doi:10.1089/ten.TEC.2014.0167.

Zeitlin, B. D. (2020). Banking on teeth - Stem cells and the dental office. Biomed J. 43(2):124-133. doi: 10.1016/j.bj.2020.02.003.

Zimmermann, A., Pelegrine, A. A., Peruzzo, D., et al. (2015). Adipose mesenchymal stem cells associated with xenograft in a guided bone regeneration model: a histomorphometric study in rabbit calvaria. Int J Oral Maxillofac Implants. 30(6):1415-1422. doi:10.11607/jomi.4164.

Zimmermann, G., & Moghaddam, A. (2011). Allograft bone matrix versus synthetic bone graft substitutes. Injury. 42 Suppl 2:S16-S21. doi:10.1016/j.injury.2011.06.199.

Downloads

Published

13/04/2021

How to Cite

STROPARO, J. L. de O.; WEISS, S. G. .; FONSECA, S. C. da .; SPISILA, L. J. .; GONZAGA, C. C. .; OLIVEIRA, G. C. de .; BROTTO , G. L. .; SWIECH, A. M. .; VIEIRA, E. D.; LEÃO NETO, R. da R.; FRANCO, C. R. C. .; LEÃO, M. P.; DELIBERADOR, T. M. .; GABARDO, M. C. L. .; ZIELAK, J. C. . Xenogenic bone grafting biomaterials do not interfere in the viability and proliferation of stem cells from human exfoliated deciduous teeth - an in vitro pilot study. Research, Society and Development, [S. l.], v. 10, n. 4, p. e34410414249, 2021. DOI: 10.33448/rsd-v10i4.14249. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14249. Acesso em: 8 jan. 2025.

Issue

Section

Health Sciences