Gesture Recognition in Images Using Neural Networks
DOI:
https://doi.org/10.33448/rsd-v8i11.1470Keywords:
Artificial intelligence; Machine learning; Identification of body expressions; Image Recognition; Sentiment analysis.Abstract
Artificial Intelligence is an area of computer research that is focused on developing mechanisms and devices to simulate human reasoning. Within this, an important subarea is the recognition of images. This article aims to describe the initial part of a research that aims to analyze and identify registered feelings of body expressions in videos of product reviews. Experimental tests have been planned to identify the best technique to solve the problem. Some forms of gesture identification through the use of neural networks were analyzed and tested.
References
Acharya, T., Mitra, S. (2007). Gesture Recognition: a survey. IEEE Transaction onSystems, Man, And cybernetics – Part C: Applications and reviews, 37(1): 3. Acess on: August, 01, 2019.
Bar, K. (2013). Sentiment Analysis of Movie Reviews and Twitter Statuses. Machine Learning–Final Project. Pp. 1-12. Available from: <http://www.cs.tau.ac.il/~kfirbar/mlproject/project-ml.pdf>. Acess on: August, 2nd, 2019.
Bay, H., Tuytelaars, T., Van Gool, L. J. (2006). SURF: Speeded up robust features. In: Anal of The 9th European Conference on Computer Vision (ECCV 2006). Graz, Austria, pp. 404-417.
Bittencourt, J. R. & Osório, F. S. (2002). O uso de redes neurais artificiais na detecção de pele em imagens digitais visando o reconhecimento de gestos. In: XI SEMINCO – Seminário de Computação 2002 da UNISINOS. Disponível em: <http://www.inf.furb.br/seminco/2002/artigos/Bittencourt-seminco2002-29.pdf>. Acesso em: 02 ago 2019.
Braga, A. P., Carvalho, A. C. P. L. F. & Ludemir, T. B. (2000). Redes neurais artificiais: teoria e aplicações. Ed. LTC, Rio de Janeiro/RJ.
Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on PatternAnalysis and Machine Intelligence, 8(6): 679-698.
Duan, D., Qian, W., Pan, S., Shi, L. & Lin, C. (2012). VISA: A Visual Sentiment AnalysisSystem. In: VINCI '12 Proceedings of the 5th International Symposium on Visual Information Communication and Interaction. pp. 22-28. ACM, New York. Available from: <http://dl.acm.org/citation.cfm?id=2397700>. Acess on: Aug., 2nd, 2019.
Haykin, S. (2001). Redes neurais: princípios e prática. Ed. Bookman, Porto Alegre/RS.
Jaques, P.A., Vicari, R. M. (2005). Estado da Arte em Ambientes Inteligentes de Aprendizagem que Consideram a Afetividade do Aluno. Revista Informática na Educação: Teoria e Prática, 8(1).
Maynard, D., Dupplaw, D., Hare, J. (2013). Multimodal Sentiment Analysis of SocialMedia. University of Sheffield, Sheffield. Available from: <https://gate.ac.uk/sale/bcs-sgai-2013/arcomem.pdf>. Acess on: 1st. Aug. 2019.
Pereira, A.S, Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Ed. UAB/NTE/UFSM, Santa Maria/RS. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 02 ago. 2019.
Picard, R. W. (1997). Affective Computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report. Disponível em: <http://affect.media.mit.edu/pdfs/95.picard.pdf>. Acesso em: 01 ago. 2019.
Prabowo, R., Thelwall, M. (2014). Sentiment Analysis: A Combined Approach. Jan.2009. Disponível em: <https://s3.amazonaws.com/academia.edu.documents/34362252/rudy-sentiment-preprint.pdf?response-content-disposition=inline%3B%20filename%3DSentiment_analysis_A_combined_approach.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20190802%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190802T181547Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=23e16fddaa9ae9b0a45aa8aa157a8e48ef4863e79d670cbd7058d4c19d92a7da>. Acesso em: August, 2nd. 2019.
Santos, H. C. (2010). Investigação e implementação de técnicas em Análise de Sentimentos. 35 f. Monografia apresentada como requisito parcial para obtenção do Grau em Engenharia da Computação, Universidade Federal de Pernambuco, Recife.
Siersodorfer, S., Minack, E., Deng, F. & Hare, J. (2010). Analyzing and Predicting Sentiment of Images on the Social Web. Article published in Siersdorfer Sources. Available from: <http://www.l3s.de/~siersdorfer/sources/2010/mm10-siersdorfer.pdf>. Acess on: August, 2nd, 2019.
Sikandar, M. (2014). A Survey for Multimodal Sentiment Analysis Methods. Int. J. Computer Technology & Applications, 5(1): 1470-1476, Jul. 2014. Disponível em: <http://www.ijcta.com/documents/volumes/vol5issue4/ijcta2014050421.pdf>. Acess on: August, 1st, 2019.
Wollmer, M., Weninger, F., Knaup, T., Schuller, B., Sun, C., Sagae, K. & Morency, L. (2013). Youtube Movie Reviews: Sentiment Analysis in na Audio-Visual Context. Intelligent Systems, IEEE, 28(3), Marc. 2013. Available from: <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6487473>. Acess on: August, 1st, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.