Instrumentation for electronic mobility and carrier concentration measurements in semiconductor samples, using the van der Pauw method

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15229

Keywords:

Van der Pauw method; Electronic mobility; Concentration of carriers; Semiconductors; Automation.

Abstract

In this work we present the results of the construction of low-cost equipment for Hall measurements, using the van der Pauw technique. For this, a system was developed composed of an electronic board controlled by a DAQ board that together with software in Labview performs the automation of all necessary measures. The system is capable of carrying out all the necessary switch operations between the contacts to perform the van der Pauw technique and obtain parameters such as electronic mobility, carriers concentration, and electrical resistivities as a function of temperature. Such measures are essential to study the electronic behavior of samples, aiming at their application in electronic devices. To check the behavior of the system, a sample of Indium tin oxide (ITO) was used. In these tests, it was found that the synchronization times used for the measurements show results with low noise and that the assembly allows the carrying out of didactic measures for undergraduate courses and also for research carried out by graduate students.

Author Biography

Adhimar Flávio Oliveira, Universidade Federal de Itajubá

Degree in Physics from the Federal University of São João del-Rei (UFSJ), master's degree in Physics and Applied Mathematics in Astrophysics, from the Federal University of Itajubá (UNIFEI) and Ph.D. in Materials Science for Engineering by UNIFEI. Currently professor, coordinator of the Physics Degree course at distance from UNIFEI.

References

Adachi, S. (2005) Properties of Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, Ltd

Dietrich, S., Kusnezoff, M., Petasch, U., & Michaelis, A. (2021). Evaluation of Indium Tin Oxide for Gas Sensing Applications: Adsorption/Desorption and Electrical Conductivity Studies on Powders and Thick Films. Sensors, 21(2), 497.

Feng, Z., Qin, P., Yang, Y., Yan, H., Guo, H., Wang, X., Zhou, X., Han, Y., Yi, J., Qi, D., Yu, X., Breese, M. B. H., Zhang, X., Wu, H., Chen, H., Xiang, H., Jiang, C., & Liu, Z. (2021). A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity. Acta Materialia, 204, 116516.

Guo, H., Chu, W., Prezhdo, O. V., Zheng, Q., & Zhao, J. (2021). Strong Modulation of Band Gap, Carrier Mobility and Lifetime in Two-Dimensional Black Phosphorene through Acoustic Phonon Excitation. The Journal of Physical Chemistry Letters, 12(16), 3960–3967.

Kraus H., Lin Q., Giustino F., Herz L. M. & Johnston M. B. (2021) Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters 12 (14), 3607-3617

Jiang, M. H., Wang, X. B., Xu, Q., Li, M., Niu, D. H., Sun, X. Q., Wang, F., Li, Z. Y.& Zhang, D. M. (2018) High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes, Optical Materials, 75, 26-30

Liu, A. Y., Herrick, R. W., Ueda, O., Petroff, P. M., Gossard, A. C. & Bowers, J. E., (2015) Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon, in IEEE Journal of Selected Topics in Quantum Electronics, 21(6), 690-697

Look, D. C. (1992) Electrical Characterization of GaAs Materials and Devices, Wiley

Martins, G. S., Gomes, S. A. O., Louro, S. R. W., Wajnberg, E., Alves, O. C., Almeida, D. B., Cesar, C. L. & Feder, D. (2020) Evaluation of Biological Toxicity of CdTe Quantum Dots in Trypanosoma cruzi. Research, Society and Development, 9(12), e34391211274.

Mosbah, A., Saker, A., Mekki, D. E., & Bouzabata, B. (2021). Microstructure and Electrical Properties of the DC-sputtered Al1−xMox Alloys. Brazilian Journal of Physics, 51(3), 461–468.

Oliveira, A. F. (2015) Transporte eletrônico em amostras de InAs/GaAs e mecanismos de espalhamento. Uma nova abordagem de ajustes pelo método de otimização global. 108 f. Tese (Doutorado em Materiais para Engenharia) – Universidade Federal de Itajubá.

Oliveira, A.F., Rubinger, R.M., Monteiro, H., Rubinger C. P. L., Ribeiro G. M. & de Oliveira A. G. (2016). Main scattering mechanisms in InAs/GaAs multi-quantum-well: a new approach by the global optimization method. J Mater Sci 51, 1333–1343

Oliveira, F. S., Guimarães, L. G., dos Santos, C. A. M., de Lima, B. S., & da Luz, M. S. (2021). Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method. Materials Chemistry and Physics, 263, 124428.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018) Metodologia de pesquisa científica, UFSM.

Sousa, N. P., Silva, C. F., Medeiros, R. G. C., Freitas, P. G. M. & Zenóbio, I. R. (2021) Semiconductor thin film’s topographic and roughness characterization through confocal microscopy. Research, Society and Development, 10(5),e22810514833.

Sun, I. W., & Chen, P. Y. (2014) Semiconductors Groups II-IV and III-V, Electrochemical Deposition. In: Kreysa G., Ota K., Savinell R. F. (eds) Encyclopedia of Applied Electrochemistry. Springer.

Sze, S. M., Li, Y., & Ng, K. K. (2021) Physics of Semiconductor Devices: John Wiley & Sons

Toledo, R. P., Huanca, D. R., Oliveira, A. F., dos Santos Filho, S. G., & Salcedo, W. J. (2020). Electrical and optical characterizations of erbium doped MPS/PANI heterojunctions. Applied Surface Science, 529, 146994

Yong-Hang, Z., & David, J. S. (2021) Heterovalent semiconductor structures and devices grown by molecular beam epitaxy, Journal of Vacuum Science & Technology A 39, 030803

Wolfe, C. M., M, W. C., Wolfe, C. N., Holonyak, N., Stillman, G. E. & Holonyak, N. J. (1989) Physical Properties of Semiconductors, Prentice Hall

Wróbel, J., Umana-Membreno, G. A., Boguski, J., Sztenkiel, D., Michałowski, P. P., Martyniuk, P., Faraone, L., Wróbel, J. & Rogalski, A. (2020), Locally‐Strain‐Induced Heavy‐Hole‐Band Splitting Observed in Mobility Spectrum of p‐Type InAs Grown on GaAs. Phys. Status Solidi RRL, 14: 1900604

Published

04/06/2021

How to Cite

RIBEIRO, L. H. .; OLIVEIRA, A. F.; RUBINGER, R. M. Instrumentation for electronic mobility and carrier concentration measurements in semiconductor samples, using the van der Pauw method . Research, Society and Development, [S. l.], v. 10, n. 6, p. e41310615229, 2021. DOI: 10.33448/rsd-v10i6.15229. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15229. Acesso em: 6 jan. 2025.

Issue

Section

Educational Objects