Antimicrobial and allelopathic effects of leaves extracts of Myrcia hatschbachii
DOI:
https://doi.org/10.33448/rsd-v10i8.17160Keywords:
Allelopathy; Antifungal; Candida albicans; Hypocotyl; Myrtaceae; Radicle.Abstract
Plants have been seen as alternatives for researching natural antimicrobials and herbicides. The aim of this work was to evaluate the antibacterial, antifungal, and allelopathic properties of leaves extracts of Myrcia hatschbachii. The crude extract and fractions were obtained by Soxhlet apparatus. Antimicrobial activity was determined by the minimum inhibitory concentration (MIC) using the broth microdilution method. The ethyl acetate fraction showed activity against Candida albicans (MIC: 62.5 µg/mL), Staphylococcus aureus (MIC: 500 µg/mL), and Pseudomonas aeruginosa (MIC: 1000 µg/mL). Allelopathic activity evaluated the influence of crude extract and fractions on the germination and growth of Lactuca sativa. The crude extract and the chloroform fraction inhibited the growth of the radicle, while the hexane fraction inhibited the growth of the hypocotyl and radicle of lettuce seeds in all concentrations (100-1000 μg/mL). The biological potential of the species motivates further study of new antimicrobial and bioherbicidal agents.
References
Ayres, M. C. C., Brandão, M. S., Vieira-Júnior, G. M., Menor, J. C. A. S., Silva, H. B., Soares, M. J. S., & Chaves, M. H. (2008). Atividade antibacteriana de plantas úteis e constituintes químicos da raiz de Copernicia prunifera. Rev. Bras. Farmacogn, 18(1), 90-97.
BFG - The Brazil Flora Group. (2018). Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia, 69, 1513-1527.
Carvalho, J. L. S., Cunico, M. M., Dias, J. F. G., Miguel, M. D., & Miguel, O. G. (2009). Termoestabilidade de processos extrativos de Nasturtium officinale R. Br., Brassicaceae por sistema de Soxhlet modificado. Quim. Nova, 32(4), 1031–1035.
Cerqueira, M. D., Souza-Neta, L. C., Passos, M. G. V. M., Lima, E. O., Roque, N. F., Martins, D., Guedes, M. L. S., & Cruz, F. G. (2007). Seasonal Variation and Antimicrobial Activity of Myrcia myrtifolia essential oils. J. Braz. Chem. Soc., 18(5), 998-1003.
Chon, S. U., Jang, H. G., Kim, D. K., Kim, Y. M., Boo, H. O., & Kim, Y. J. (2005). Allelopathic potential in lettuce (Lactuca sativa L.) plants. Sci. Hortic., 106(3), 309-317.
Clinical and Laboratory Standard Institute - CLSI. (2008). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M07-A8.
De Feo, V., De Simone, F., & Senatore, F. (2002). Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry, 61(5), 573-578.
Dias, J. F. G., Círio, G. M., Miguel, M. D., & Miguel, O. G. (2005). Contribution to the allelophatic study of Maytenus ilicifolia Mart. ex Reiss, Celastraceae. Rev. Bras. Farmacogn, 15(3), 220-223.
Franco, D. M., Saldanha, L. L., Silva, E. M., Nogueira, F. T. S., Dokkedal, A. L., Santos, C., & Almeida, L. F. R. (2015). Effects of leaf extracts of Myrcia guianensis (Aubl.) DC: on growth and gene expression during root development of Sorghum bicolor (L.) Moench. Allelophathy J, 35(2), 237–248.
Gatto, L. J., Fabri, N. T., Souza, A. M., Fonseca, N. S. T., Furusho, A. S., Miguel, O. G., Dias, J. F. G., Zanin, S. M. Z., & Miguel, M. D. (2020). Chemical composition, phytotoxic potential, biological activities and antioxidant properties of Myrcia hatschbachii D. Legrand essential oil. Braz. J. Pharm. Sci, 56, 1-9.
Gatto, L. J., Oliveira, G. R. B., Rech, K. S., Moura, P. F., Gribner, C., Merino, F. J., Ávila, S., Dias, J. F. G., Miguel, O. G., & Miguel, M. D. (2021). Inhibition of α-glucosidase, pancreatic lipase, and antioxidant property of Myrcia hatschbachii D. Legrand containing gallic and ellagic acids. Bol. Latinoam. Caribe Plant. Med. Aromat., 20 (3), 226-243.
Imatomi, M., Novaes, P., Matos, A. P., Gualtieri, S. C. J., Molinillo, J. M. G., Lacret, R., Varela, R. M., & Macías, F. A. (2013). Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem. Syst. Ecol., 46, 29–35.
Imatomi, M., Novaes, P., Miranda, M. A. F. M., & Gualtieri, S. C. J. (2015). Phytotoxic effects of aqueous leaf extracts of four Myrtaceae species on three weeds. Acta Sci., 37(2), 241-248.
Latté, K. P. & Kolodziej, H. (2000). Antifungal effects of hydrolysable tannins andrelated compounds on dermatophytes, mould fungi and yeasts. Z. Naturforsch., 55, 467–472.
Macías, F. A., Castellano, D., & Molinillo, J. M. (2000). Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chemistry, 48(6), 2512-2521.
Maguire, J. D. (1962). Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop sci., 2(2), 176-177.
Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 49(4), 396-402.
Pereira, J. V., Freires, I. A., Castilho, A. R., Cunha, M. G., Alves, H. S., & Rosalen, P. L. (2016). Antifungal potential of Sideroxylon obtusifolium and Syzygium cumini and their mode of action against Candida albicans. Pharm. Biol., 54(10), 2312–2319.
Reigosa, M., Gomes, A. S., Ferreira, A. G., & Borghetti, F. (2013). Allelopathic research in Brazil. Acta Bot. Bras., 27(4), 629-646.
Sa, F. A. S., Paula, J. A. M., Santos, P. A., Oliveira, L. A. R., Oliveira, G. A. R., Lião, L. M., Paula, J. R., & Silva, M. R. R. (2017). Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves. Molecules, 22(1100), 1-10.
Safaei-Ghomi, J. & Ahd, A. A. (2010). Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn. Mag., 6(23), 172-176.
Santana, C. B., Souza, J. G. L., Coracini, M. D. A., Walerius, A. H., Soares, V. D., Costa, W. F., & Pinto, F. G. S. (2018). Chemical composition of essential oil from Myrcia oblongata DC and potencial antimicrobial, antioxidant and acaricidal activity against Dermanyssus gallinae (DEGEER, 1778). Biosci. J., 34(4), 996-1009.
Santiago, J. A., Cardoso, M. G., Cruz, F. A., Palmieri, M. J., Souza, R. V., Soares, L. I., Campos, J. M. S., & Andrade-Vieira, L. F. (2017). Cytogenotoxic effect of essential oil from Backhousia citriodora L. (Myrtaceae) on meristematic cells of Lactuca sativa L. South Afr. J. Bot., 112, 515-520.
Santos, A. O., Nakamura, T. U., Dias Filho, B. P., Veiga Junior, V. F., Pinto, A. C., & Nakamura, C. V. (2008). Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. Mem. Inst. Oswaldo Cruz, 103(3), 277-281.
Santos, C., Galaverna, R. S., Angolini, C. F. F., Nunes, V. V. A., Almeida, L. F. R., Ruiz, A. L. T. G., Carvalho, J. E., Duarte, R. M. T., Duarte, M. C. T., & Eberlin, M. N. (2018). Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules, 23, 1-12.
Santurio, J. M., Santurio, D. F., Pozzatti, P., Moraes, C., Franchin, P. R., & Alves, S. H. (2007). Atividade antimicrobiana dos óleos essenciais de orégano, tomilho e canela frente a sorovares de Salmonella enterica de origem avícola. Cienc. Rural, 37, 803–808.
Silva, E. C., Paola, M. V. R. V., & Matos, J. R. (2007). Análise térmica aplicada à cosmetologia. Braz. J. Pharm. Sci, 43(3), 347-356.
Silva, P. S. S. (2012). Atuação dos aleloquímicos no organismo vegetal e formas de utilização da alelopatia na agronomia. Biotemas, 25(3), 65-74.
Souza Filho, A. P. S., Santos, R. A., Santos, L. S., Guilhon, G. M. P., Santos, A. S., Arruda, M. S. P., Muller, A. H., & Arruda, A. C. (2006). Allelophatic Potential of Myrcia guianensis. Planta Daninha, 24(4), 649-656.
Tanaka, J. C. A., Silva, C. C., Dias Filho, B. P., Nakamura, C. V., Carvalho, J. E., & Folgio, M. A. (2015). Constituintes químicos de Luehea divaricata Mart. (Tiliaceae). Quím. Nova, 28(5), 834-837.
Thirach, S., Tragoolpua, K., & Punjaisee, S. (2003). Antifungal Activity of Some Medicinal Plant Extracts Against Candida albicans and Cryptococcus neoformans. Acta Hortic., 597, 217-221.
Veiga, A., Toledo, M. G. T., Rossa, L. S., Mengarda, M., Stofella, N. C. F., Oliveira, L. J., Gonçalves, A. G., & Murakami, F. S. (2019). Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J. Microbiol. Methods, 162, 50-61.
Wubshet, S. G., Moresco, H. H., Tahtah, H., Brighente, I. M. C., & Staerk, D. (2015). High-resolution bioactivity profiling combined with HPLC–HRMS–SPE–NMR: a-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae). Phytochemistry,116, 246
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Larissa Junqueira Gatto; Andressa Veiga; Natasha Tiemi Fabri Higaki; Juliane Nadal Dias Swiech; Elisiane de Bona Sartor; Caroline Gribner; Paula Francislaine Moura; Obdulio Gomes Miguel; Marilis Dallarmi Miguel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.