Performance characterization of Polylatic Acid (PLA) material manufactured by Fusion and Deposition Modeling (FDM) technology

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17348

Keywords:

Manufactured Materials; Printing, Three-Dimensional; Mechanical Processes; Mechanical phenomena.

Abstract

The aim of this study was to characterize the performance of polylactic acid (PLA) material when manufactured by melt deposition modeling (FDM) technology. For the elaboration and organization of the experimental procedure, this study was constructed in accordance with the ASTM D3039/3039-95A standard, using a total of 36 specimens, modeled using Autodesk Inventor CAD software and later exported to CAM software Makerware, where parameters and processes for 3D printing were defined. The tensile tests were carried out on the EMIC DL 3000 machine, maintaining a standard condition with the laboratory at a temperature around 20°C. The values ​​defined as significant for this study were: Maximum Tension; Breaking Stress and Modulus of Elasticity. The manufactured specimens showed anisotropic behavior. In the stress-strain tests, the ruptures occurred in perfect profile rupture. The stress-strain curves showed practically no yield area. The deposition rates of 100% for the X axis showed higher rates for tensile strength as opposed to the 20% deposition rates for the Y axis. With regard to elongation, the parts with 20% deposition rate on the X axis had higher rates. Mechanical properties, tensile strength and flexural strength, increased with filling. PLA, manufactured using the FDM process, demonstrated better mechanical performance when produced on an X axis with 100% deposition rates for the structural internal fill and an extrusion temperature of 200°C. It is characterized as a typical polymeric brittle.

References

Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. In Rapid Prototyping Journal (Vol. 8, Issue 4). https://doi.org/10.1108/13552540210441166

Alves, T. P., Jesus, A. V. S. De, Valverde, G., Ribeiro, R. R. M., Kívia, L., & Rodrigues, D. O. (2021). ANÁLISE DA INFLUÊNCIA DO PADRÃO DE PREENCHIMENTO E DA ALTURA DE CAMADA DE DEPOSIÇÃO NA TENSÃO DE RUPTURA DE CORPOS DE PROVA FABRICADOS EM POLI ÁCIDO LÁTICO (PLA) A PARTIR DE IMPRESSÃO 3D.

ASTM D303995a (1998). Standard test method for tensile properties of polymer matrix composite materials.

Azevedo, C. M. P. de, Godinho, L. H., Saraiva, M. A. L., Alvarenga, S. das D., & Ribeiro, M. V. A. de A. (2016). Ensaio Mecânico De Tensão-Deformação Sob Tração : UM ESTUDO INTEGRADO COM A DISCIPLINA DE CÁLCULO. Perspectivas Online: Exatas & Engenharia, 29–35.

Bagsik, A. (2011). MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELING PARTS MANUFACTURED WITH ULTEM. 1294–1298.

Bellini, A., & Güçeri, S. (2003). Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyping Journal, 9(4), 252–264. https://doi.org/10.1108/13552540310489631

Camargo, J. C., Machado, Á. R., Almeida, E. C., & Silva, E. F. M. S. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. International Journal of Advanced Manufacturing Technology, 103(5–8), 2423–2443. https://doi.org/10.1007/s00170-019-03532-5

Callister, Jr. (2013). Ciências e engenharia dos materias: uma introdução. (LTC (8 ed.))

Ghosh, S. B., Bandyopadhyay-Ghosh, S., & Sain, M. (2010). Composites. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, 293–310. https://doi.org/10.1002/9780470649848.ch18

Heidari-Rarani, M., Rafiee-Afarani, M., & Zahedi, A. M. (2019). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Composites Part B: Engineering, 175(October 2018), 107147. https://doi.org/10.1016/j.compositesb.2019.107147

Lopes, J. T. de B. (2011). Propriedades Dos Materiais: Diagramas Tensão-DEFORMAÇÃO. In Estrutura e Propriedades dos Materiais (pp. 126–161).

Lovo, J. F. P., & Fortulan, C. A. (2016). Estudo de propriedades mecânicas e anisotropia em peças fabricadas por manufatura aditiva tipo FDM. I Simpósio Do Programa de Pós-Graduação Em Engenharia Mecânica Da EESC-USP (SiPGEM/EESC-USP), 1, 2–8.

Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003

Navarro, R. F. (2018). Comportamento plástico e os efeitos do Envelhecimento sobre a tensão de escoamento. Revista Eletrônica de Materiais e Processos, 3, 170–176.

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Sai Chennakesava, P., & Yeole, S. (2014). Fused Deposition Modeling. July. https://doi.org/10.1201/9780203910795.ch8

Santana, L. (2019). Avaliação Das Capacidades Da Impressão 3D De Baixo Custo Na Fabricação De Snap-Fits: Uma Relação De Reconhecimento Usuário-Sistema De Impressão. International Journal of Structural Integrity, 1(2), 161–172.

Santana, L., Alves, J. L., Sabino Netto, A. da C., & Merlini, C. (2018). A comparative study between PETG and PLA for 3D printing through thermal, chemical and mechanical characterization. Revista Materia, 23(4). https://doi.org/10.1590/s1517-707620180004.0601

Torres, J., Cotelo, J., Karl, J., & Gordon, A. P. (2015). Mechanical property optimization of FDM PLA in shear with multiple objectives. Jom, 67(5), 1183–1193. https://doi.org/10.1007/s11837-015-1367-y

Volpato, N. (2017). Manufatura Aditiva: Tecnologias e aplicações na impressão 3D (Blucher (ed.); 1st ed.).

Published

15/07/2021

How to Cite

CASTELO BRANCO, R. R.; MARTINS, K. Y. N.; FILGUEIRA, A. K. L. .; VALADARES, E. J. O. .; GALDINO, K. E. .; MORAIS, M. E. de .; RAMOS, M. das G. O. .; MARTINS, N. do N. .; MARTINS, K. Y. N. .; RODRIGUES, J. K. G. . Performance characterization of Polylatic Acid (PLA) material manufactured by Fusion and Deposition Modeling (FDM) technology. Research, Society and Development, [S. l.], v. 10, n. 8, p. e44210817348, 2021. DOI: 10.33448/rsd-v10i8.17348. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17348. Acesso em: 22 dec. 2024.

Issue

Section

Engineerings