Phenotypic identification of bacteria of the family Enterobacteriaceae with resistance profile on inanimate surfaces in a University Hospital
DOI:
https://doi.org/10.33448/rsd-v10i11.18508Keywords:
Klebsiella pneumoniae carbapenemase (KPC); Extended-spectrum beta-lactamase producing bacteria (ESBL); Metallo-beta-lactamase producing bacteria (MBL); Inanimate surfaces; Hospital infection.Abstract
The aim of this study was to identify bacteria belonging to the family Enterobacteriaceae with resistance profile on inanimate surfaces and utensils of sectors from a University Hospital of Pernambuco. Initially, the samples were collected on 25 inanimate surfaces and utensils of the Intensive Care Unit (ICU), Hemodialysis Center and Medical Clinic in 2018. The samples were plated on MacConkey and SS agar and incubated at 35 ± 2 °C for 24 hours. After incubation, they were submitted to biochemical tests to confirm the presence of bacteria to the family Enterobacteriaceae. Subsequently, Klebsiella pneumoniae carbapenemase (KPC) was identified by the disc diffusion method, as well as by Hodge test; extended-spectrum beta-lactamase producing bacteria (ESBL) by the disk diffusion and double disk diffusion tests; and metallo-beta-lactamase producing bacteria (MBL) through the disc diffusion method according to the Clinical and Laboratory Standards Institute (CLSI). Eight surfaces or utensils of the 18 samples with Enterobacteriaceae presented resistance profile (44.4%). KPC was identified in 46.7% of the samples that presented bacteria with resistance profile, one presented simultaneously KPC and ESBL (6.65%), another one KPC and MBL concomitantly (6.65%) and 6 samples presented only ESBL (40%). Medical Clinic and Hemodialysis Center had the highest presence of resistant Enterobacteriaceae. The detection of resistant microorganisms in hospitals is worrying and emphasizes the importance of health professionals in acquiring knowledge about preventive measures to minimize hospital infections.
References
Agarwal, M., Shiau, S., & Larson, EL. (2018). Repeat gram-negative hospital-acquired infections and antibiotic susceptibility: A systematic review. Journal of Infection and Public Health, 11(4), 455-462. doi:10.1016/j.jiph.2017.09.024
Banin, E., Hughes, D., & Kuipers, O.P. (2017). Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiology Reviews, 41(3), 450-452. doi:10.1093/femsre/fux016
Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Reviews Anti-infective Therapy, 16(10), 749-761. doi:10.1080/14787210.2018.1522249
Bela-Anacleto, A.S.C., Sousa, B.E.C., Yoshikawa, J.M., Avelar, A.F.M., & Pedreira, M.L.G. (2013). Higienização das mãos e a segurança do paciente: Perspectiva de docentes e universitários. Texto Contexto Enfermagem, 22, 901-908. doi:10.1590/S0104-07072013000400005
Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O., & Piddock, L.J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42. doi:10.1038/nrmicro3380
Bush, K., (2015). A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Internacional Journal Antimicrobial Agents, 46(5), 483-493. doi:10.1016/j.ijantimicag.2015.08.011
Chen, L., Mediavilha, J.R., Endimiani, A., Rosenthal, M.E., Zhao, Y., Bonomo, R.A., et al. (2011). Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) variants. Journal of Clinical Microbiology, 49, 579-585. doi:10.1128/JCM.01588-10
Clinical Laboratory Standards Institute. M100-S24 (2016). Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. Retrieved July, 2018, from https://webstore.ansi.org/preview-pages/CLSI/preview_CLSI+M100-S26.pdf
de Freitas, C.G.S., Staudt, K.J., Khün, K.H., Alves, I.A., & Meneghete, M.C. (2019). Prevalência de microrganismos em bandejas utilizadas pela enfermagem na administração de medicamentos em ambiente hospitalar. Revista Interdisciplinar Ciências Saúde Biológicas, 3(2), 24-34. doi:10.31512/ricsb.v3i2.3199
Debnath, T., Bhowmik, S., Islam, T., & Chowdhury, M.M.H. (2018). Presence of multidrug-resistant bacteria on mobile phones of healthcare workers accelerates the spread of nosocomial infection and Regarded as a Threat to Public Health in Bangladesh. Journal of Microscopy Ultrastructure, 6(3), 165. doi:10.4103/JMAU.JMAU_30_18
El Chakhtoura, N.G., Saade, E., Iovleva, A., Yasmin, M., Wilson, B., Perez, F., et al. (2018). Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ‘molecularly targeted’therapy. Expert Review of Anti-infective Therapy, 16(2), 89-110. doi:10.1080/14787210.2018.1425139
Falcone, M., Tiseo, G., Dentali, F., La Regina, M., Foglia, E., Gambacorta, M., et al. (2018). Predicting resistant etiology in hospitalized patients with blood cultures positive for Gram-negative bacilli. European Journal of Internal Medicine, 53, 21-28. doi:10.1016/j.ejim.2018.01.029
Geisinger, E., & Isberg, R.R. (2017). Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. The Journal Infectious Diseases, 215(suppl_1), S9-S17. doi:10.1093/infdis/jiw402
Johani, K., Abualsaud, D., Costa, D.M., Hu, H., Whiteley, G., Deva, A., et al. (2018). Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces. Journal of Infection and Public Health, 11(3), 418-424. doi: 10.1016/j.jiph.2017.10.005
Khan, H,A., Baig, F.K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. doi:10.1016/j.apjtb.2017.01.019
Lago, A., Fuentefria, S.R., & Fuentefria, D.B. (2010). Enterobactérias produtoras de ESBL em Passo Fundo, Estado do Rio Grande do Sul, Brasil. Revista da Sociedade Brasileira de Medicina Tropical, 43, 430-434. doi:10.1590/S0037-86822010000400019
Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J.A., Klugman, K., et al. (2016). Access to effective antimicrobials: a worldwide challenge. Lancet. 387(10014), 168-175. doi:10.1016/S0140-6736(15)00474-2
Logan, L.K., & Weinstein, R.A. (2017). The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. The Journal of Infectious Diseases, 215(suppl_1), S28-S36. doi: 10.1093/infdis/jiw282.
Marques, L.A., Silva, F.F., Silva, N.B.S., Faria, G.O., Alves, P.G.V., Bessa, M.A.S., et al. (2019). The surface screening of neonatal intensive care unit for multidrug resistant gram-negative bacteria. Internacional Journal of Development Resarch, 9(9), 29928-31. Retrieved from https://www.journalijdr.com/surface-screening-neonatal-intensive-care-unit-multidrug-resistant-gram-negative-bacteria.
Meyer, G., & Picoli, S.U. (2011). Fenótipos de betalactamases em Klebsiella pneumoniae de hospital de emergência de Porto Alegre. Jornal Brasileiro de Patolologia e Medicina Laboratorial, 47, 25-31. doi:10.1590/S1676-24442011000100003
Monteiro, J., Santos, A.F., Asensi, M.D., Peirano, G., Gales, & A.C. (2009). First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrobial Agents Chemotherapy, 53, 333-4. doi:10.1128/AAC.00736-08
Mutters, N,T., De Angelis, G., Restuccia, G., Di Muzio, F., Schouten, J., Hulscher, M., et al. (2018). Use of evidence-based recommendations in an antibiotic care bundle for the intensive care unit. Internacional Journal of Antimicrobial Agents, 51(1), 65-70. doi:10.1016/j.ijantimicag.2017.06.020
Peirano, G., Seki, L.M., Passos, V.L., Pinto, M.C., Guerra, L.R., & Asensi, M.D. (2009). Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. Journal of Antimicrobial Agents Chemotherapy. 63, 265-8. doi:10.1093/jac/dkn484
Pinto, F.M., Simas, D.M., Baldin, C.P., Limberger, I.I., Silva, R.C.F., Antochevis, L.C., et al. (2014). Prevalência de carbapenemases em enterobactérias resistentes a carbapenêmicos em quatro hospitais terciários de Porto Alegre. Clinical & Biomedical Research, 34, 47-52. Retrieved from https://seer.ufrgs.br/hcpa/article/view/44412.
Puzniak, L., DePestel, D.D., Srinivasan, A., Ye, G., Murray, J., Merchant, S., et al. (2019). A combination antibiogram evaluation for Pseudomonas aeruginosa in respiratory and blood sources from intensive care unit (ICU) and non-ICU settings in US hospitals. Antimicrobial Agents Chemotherapy, 63(4), e02564-18. doi:10.1128/AAC.02564-18
Renner, J.D.P, & Carvalho, E.D. (2013). Microrganismos isolados de superfícies da UTI adulta em um hospital do Vale do Rio Pardo – RS. Revista de Epidemiologia e Controle de Infecção, 3, 40-44.
Rios, L.L., Oliveira, V.T., Malta, T.B., & Santos, G.P. (2020). Isolamento, identificação e teste de susceptibilidade aos antimicrobianos de bactérias patogênicas em vestimentas usadas por profissionais de saúde em ambiente hospitalar. Brazilian Journal of Health Review, 3(5), 12999-13027. doi:10.34119/bjhrv3n5-131
Rodriguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I., & Pascual, A. (2018). Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clinical Microbiology Reviews, 31(2), e00079-17. doi:10.1128/CMR.00079-17
Rose, M., Landman, D., & Quale, J. (2014). Are community environmental surfaces near hospitals reservoirs for gram-negative nosocomial pathogens? American Journal of Infection Control, 42, 346-348. doi:10.1016/j.ajic.2013.12.025
Rutala, W.A., & Weber, D.J. (2019). Disinfection, sterilization, and antisepsis: Principles, practices, current issues, new research, and new technologies. American Journal of Infection Control, 47, A1-A2. doi:10.1016/j.ajic.2019.03.035
Silva, K.C., & Lincopan, N. (2012). Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. Jornal Brasileiro de Patolologia e Medicina Laboratorial, 48, 91-99. doi:10.1590/S1676-24442012000200004
Smibert, O.C., Aung, A.K., Woolnough, E., Carter, G.P., Schultz, M.B., Howden, B.P., et al. (2018). Mobile phones and computer keyboards: unlikely reservoirs of multidrug-resistant organisms in the tertiary intensive care unit. Journal of Hospital Infection, 99(3), 295-298. doi:10.1016/j.jhin.2018.02.013
Taylor-Robinson, A.W. (2019). Contamination of Emergency Medical Vehicles and Risk of Infection to Paramedic First Responders and Patients by Antibiotic-Resistant Bacteria: Risk Evaluation and Recommendations from Ambulance Case Studies. In Hygiene for Human Health and Infection Control. Intech Open.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Joanna Francyne Silva de Barros; Isabel Cristina da Silva; Sandrelli Meridiana de Fátima Ramos dos Santos Medeiros; Alyson Mykael Albuquerque Florenço; José Jamildo de Arruda Filho; Wheverton Ricardo Correia do Nascimento; Isabella Macário Ferro Cavalcanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.