Mitigation of water restriction effects on soybean with biofertilizer: metabolic and stomatal conductance changes

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19377

Keywords:

Amino acids; Antioxidant enzymes; Glycine max; Oxidative stress.

Abstract

The demand for soybean has increased in the international market, and water restriction is an important factor in reducing its yield. Therefore, the development of technologies aimed to reducing the damage caused by water stress becomes strategic. Thus, the objective was to demonstrate the role of the amino acid L-glutamic acid in mitigating water stress in soybean plants. A study was conducted in a greenhouse using soybean plants in vegetative stage subjected to water restriction and foliar applications of biofertilizer obtained from bacterial fermentation, containing 25% of the amino acid L-glutamic acid, sprayed three days before the imposition of water restriction and when the substrate moisture reached 50% of the water retention capacity (WRC).  Stomatal resistance was determined throughout the days and three collections of plant material were carried out: at the beginning of water restriction, one and four days after rehydration for biochemical and enzymatic analyses. Plants that were supplied with biofertilizer at the beginning of water restriction showed lower stomatal resistance, while plants that received application three days before 50% WRC showed increases in sugar accumulation, in free amino acids and proline content, and in nitrate reductase and peroxidase enzymes activity, consequently, reducing lipids peroxidation, mitigating the effects of oxidative stress.

References

Anda, A., Soós, G., Menyhárt, L., Kucserka, T. & Simon, B. (2020). Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Research, 245(107673). https://doi.org/10.1016/j.fcr.2019.107673

Bajguz, A. (2014). Nitric oxide: role in plants under abiotic stress. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, 137–159.

Basal, O., Szabó, A. & Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22 (100135). https://doi.org/10.1016/j.cpb.2020.100135

Bates, L. S., Waldern, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.

Batista-Silva, W., Heinemann, B., Rugen, N., Nunes-Nesi, A., Araújo, W.L., Braun, H. P. & Hildebrandt, T. M. (2019). The Role of Amino Acid Metabolism during Abiotic Stress Release. Plant Cell Environment, 42(5), 1630–1644. https://doi.org/10.1111/pce.13518

Bolouri-Moghaddam M. R., Le Roy K., Xiang L., Rolland F. & Van den Ende W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 277(9), 2022–2037. https://doi.org/10.1111/j.1742-4658.2010.07633.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(7), 248-254.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento, 2020. Instrução normativa nº 61, 474 de 8 de julho de 2020. Diário Oficial da União. https://www.in.gov.br/web/dou/-/instrucao475normativa-n-61-de-8-de-julho-de2020

Cao, Y.P., Gao, Z.K., Li, J.T., Xu, G.H. & Wang, M. (2010). Effects of extraneous glutamic acid on nitrate contents and quality of chinese chive. Acta Horticulturae, 856, 91-98. https://doi.org/10.17660/ActaHortic.2010.856.11

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A. & Fernandez, E. (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science, 22(2), 163–174.

Devi, S. R. & Prasad, M. N. V. (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science, 138(2), 157-65.

Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C. & Liu, L. (2019) A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26(8), 2006-2017. https://doi.org/10.1016/j.sjbs.2019.08.005

Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B. & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146,1-12. doi:10.1016/j.plaphy.2019.11.003.

Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable Agriculture., 29, 185-212. https://doi.org/10.1007/978-90-481-2666-8_12

Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37, 529-535. https://doi.org/10.28951/rbb.v37i4.450

Forde B. G. & Lea P. J. (2007). Glutamate in plants: metabolism, regulation and signalling. Journal of Experimental Biology, 58(9), 2339–2358. doi:10.1093/jxb/erm121

Gemin, L. G., Mógor, A. F., Mógor, G., Röder, C. & Szilagyi-Zecchin V. J. (2018). Changes in growth and concentration of amino acids in Chinese cabbage seedlings using bacterial fermented broth. Idesia, 36, 7-13. http://dx.doi.org/10.4067/S0718-34292018000100007

Giannopolitis, C. N. & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314.

Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. doi: 10.1016/j.plaphy.2010.08.016

Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4, 419. doi: 10.3389/fpls.2013.00419

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling and Behavior, 7(11),1456–1466. https://doi.org/10.4161/psb.21949

Heath, R. L. & Packer, L. (1968) Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198.

Jaworski, E. K. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical. Research Communications New York, 43(6), 1274-1279.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.

Liu, F., Jensen, C. R. & Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13. doi: 10.1016/S0378-4290(03)00165-5

Liu, S., Zhang, M., Feng, F. & Tian, Z. (2020). Toward a ‘‘Green Revolution’’ for Soybean. Molecular Plant, 13(5), 688–697. doi: 10.1016/j.molp.2020.03.002.

Magné, C. & Larher, F. (1992) High sugar content interferes with colorimetric determination of amino acids and free proline. Analytical Biochemistry, 200(1), 115–118.

Mahajan S. & Tuteja N. (2005) Cold, salinity and drought stresses: na overview. Arch. Biochem. Biophys. 444(2), 139–158. doi: 10.1016/j.abb.2005.10.018.

Maldonade, I. R., Carvaho, P. G. B. & Ferreira, N. A. (2013) Protocolo para a Determinação de Açucares Totais em Hortaliças pelo Método de DNS. Comunicado Técnico: EMBRAPA, 85, 1-4.

McDermitt, D. K. (1990). Sources of Error in the Estimation of Stomatal Conductance and Transpiration from Porometer Data. HortScience, 25(12), 1538-1548. doi: 10.21273/hortsci.25.12.1538

Mousavi-Derazmahalleh, M., Bayer, P.E., Hane, J.K., Babu, V., Nguyen, H.T., Nelson, M.N., Erskine, W., Varshney, R.K., Papa, R. & Edwards, D. (2018) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ.. 42(1), 6–19. https://doi.org/10.1111/pce.13203

Peixoto, H. P. P., Cambraia, J., Sant’ana, R., Mosquim, P. R. & Moreira, A. M. (1999). Aluminium effects on lipid peroxidation and the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3), 137-143.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Available in: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Access on: 18 Agust 2021.

Pompelli, M. P., França, S. C., Tigre, R. C., Oliveira, M. T., Sacilot, M. & Pereira, E. C. (2013). Spectrophotometric determinations of chloroplastidic pigments in acetone, ethanol and dimethylsulphoxide. Revista Brasileira de Biociências, 11(1), 52-58.

Rhodes D. & Handa S. (1989). Amino acid metabolism in relation to osmotic adjustment in plant cells. In Cherry J. H. (ed) Environmental stress in plants, biochemical and physiological mechanisms. Ecological Sciences, 19, 41-62.

Röder, C., Mógor, A. F., Szilagyi-Zecchin, V. J., Gemin, L. G., & Mógor, G. (2018). Potato yield and metabolic changes by use of biofertilizer containing L-glutamic acid. Comunicata Scientiae, 9(2), 211-218. doi: 10.14295/CS.v9i2.2564

Saddhe, A. A., Manuka, R. & Suprasanna, P. (2020) Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiologia Plantarum,171(4), 739-755. https://doi.org/10.1111/ppl.13283.

Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012, 217037. doi: 10.1155/2012/217037

Silva, T. R da., Costa, M. L. A. da, Farias, L. R. A., Santos, M. A. dos, Rocha, J. J. de L. & Silva, J. V. (2021) Fatores abióticos no crescimento e florescimento das plantas. Research, Society and Development 10(4). doi: http://dx.doi.org/10.33448/rsd-v10i4.13817

Taiz, L.; Zeiger, E., Moller I. M. & Murphy, A. (2017) Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, p. 888

Talbi, S., Romero-Puertas, M. C., Hernández, A., Terrón, L., Ferchichi, A. & Sandalio, L. M. (2015). Drought tolerance in a saharian plant Oudneya africana: role of antioxidant defences. Environmental and Experimental Botany, 111, 114–126. doi: 10.1016/j.envexpbot.2014.11.004

Teisseire, H. & Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant science, 153, 65-72.

Teixeira, W.F., Soares, L.H., Fagan, E.B., Mello, S.C., Reichardt, K. & Dourado-Neto, D. (2020). Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. Journal of Plant Growth Regulation, 39, 905–919. https://doi.org/10.1007/s00344-019-10032-z

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17– 22. https://doi.org/10.1038/nclimate2067

Winters, A. L., Lloyd, J. D., Jones, R. & Merry, R. J. (2002) Evaluation of a rapid method for estimating free amino acids in silages. Animal feed science and technology, 99, 177-187.

Xu, Z., Ma, J., Lei, P., Wang, Q., Feng, X. & Xu, H. (2020). Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Scientific Reports, 10(252). doi: 10.1038/s41598-019-57190-4

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5(6), 649–654. doi: 10.4161/psb.5.6.11398

Zhang, F., Guo, J. K., Yang, Y. L., He, W. L. & Zhang, L. X. (2004). Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiologiae Plantarum, 26, 345–352.

Zhang, L., Yang X., Gao D., Wang L., Li J., Zhanbo Wei Z. & Shi Y. (2017). Effects of poly-γglutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Scientific Reports, 7, 1-13. https://doi.org/10.1038/s41598-017-06248-2

Zhong, C., Cao, X., Bai, Z., Zhang, J., Zhu, L., Huang, J. & Jin, Q. (2018). Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 125, 52–62. doi: 10.1016/j.plaphy.2018.01.024.

Downloads

Published

22/08/2021

How to Cite

MARQUES, H. M. C.; CORDEIRO, E. C. . N.; AMATUSSI, J. de O.; LARA, G. B. de; MÓGOR, G.; NEDILHA, L. C. B. M.; MÓGOR, Átila F. Mitigation of water restriction effects on soybean with biofertilizer: metabolic and stomatal conductance changes. Research, Society and Development, [S. l.], v. 10, n. 11, p. e11101119377, 2021. DOI: 10.33448/rsd-v10i11.19377. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19377. Acesso em: 27 apr. 2024.

Issue

Section

Agrarian and Biological Sciences