A influência de Ni e Co suportados em diatomita brasileira para produção de H2 via reforma a seco do metano

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19729

Keywords:

Diatomite, Nickel, Cobalt, Hydrogen, Dry reforming.

Abstract

A diatomita brasileira foi usada como suporte catalítico para a reforma a seco do metano. As fases ativas utilizadas foram Ni e Co em diferentes concentrações. Os catalisadores foram calcinados a 500 °C por 5 he caracterizados por DRX, BET, TPR e SEM. Os resultados de DRX dos catalisadores mostraram que houve formação de espinélio de NiCo2O4 para os catalisadores bimetálicos, além das fases esperadas de NiO e Co3O4. Os testes catalíticos foram realizados a 700 °C com velocidade espacial de18 L⋅h-1⋅g-1, demonstrando um efeito sinérgico entre as fases ativas (Ni e Co). O catalisador Ni8Co2/ D apresentou maior rendimento para H2, melhor estabilidade e menor taxa de formação de carbono entre os catalisadores bimetálicos. Os resultados de MEV após a reação indicaram a presença de filamentos de carbono. De acordo com os resultados, a diatomita brasileira pode ser aplicada como suporte catalítico na reação de reforma a seco do metano.

Downloads

Author Biographies

  • Gineide Conceição Anjos, Federal University of Rio Grande do Norte

    Graduate Program in Materials Science and Engineering.

  • Ângelo Anderson Silva de Oliveira, Federal University of Rio Grande do Norte

    Postgraduate Program in Petroleum Science and Engineering.

  • Dulce Maria de Araújo Melo, Federal University of Rio Grande do Norte
    Postgraduate Program in Materials Science and Engineering and Postgraduate Program of Chemistry.
  • Rodolfo Luis Bezerra de Araújo Medeiros, Federal University of Rio Grande do Norte

    Postgraduate Program in Materials Science and Engineering.

  • Cássia Carvalho de Almeida, Federal University of Rio Grande do Norte

    Postgraduate Program in Materials Science and Engineering.

  • Elania Maria Fernandes Silva, Federal University of Rio Grande do Norte

    Graduate Program in Materials Science and Engineering.

  • Eledir Vitor Sobrinho, Federal University of Rio Grande do Norte

    Institute of Chemistry.

References

Costa, R. F., Mateus, P., & Barbosa, A. (2021). Secagem de placas cerâmicas híbridas argila/rejeito de diatomita : Um estudo experimental. Research, Society and Development, 10(8), e13710817174. https://doi.org/dx.doi.org/10.33448/rsd-v10i8.17174

E. J. Fernandes, R.C.M. Silva, H.Á. Oliveira, B.B. Toledo, M.B.T. Moura, F. B. P. (2014). Geração de hidrogênio pela decomposição catalítica do metano em catalisadores de Co/SiO2 promovidos por Ni e Fe. Engevista, 16(1), 41–49.

Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A., & Abi Aad, E. (2015). CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study. International Journal of Hydrogen Energy, 40(30), 9201–9208. https://doi.org/10.1016/j.ijhydene.2015.05.147

Fakeeha, A. H., Khan, W. U., Al-Fatesh, A. S., Abasaeed, A. E., & Naeem, M. A. (2015). Production of hydrogen and carbon nanofibers from methane over Ni-Co-Al catalysts. International Journal of Hydrogen Energy, 40(4), 1774–1781. https://doi.org/10.1016/j.ijhydene.2014.12.011

Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., & Mondragón, F. (2008). Dry reforming of methane over LaNi1-yByO3±δ (B = Mg, Co) perovskites used as catalyst precursor. Applied Catalysis A: General, 334(1–2), 251–258. https://doi.org/10.1016/j.apcata.2007.10.010

Gao, X., Tan, Z., Hidajat, K., & Kawi, S. (2017). Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catalysis Today, 281, 250–258. https://doi.org/10.1016/j.cattod.2016.07.013

García-Labiano, F., García-Díez, E., De Diego, L. F., Serrano, A., Abad, A., Gayán, P., Adánez, J., & Ruíz, J. A. C. (2015). Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype. Fuel Processing Technology, 137, 24–30. https://doi.org/10.1016/j.fuproc.2015.03.022

Garcia, G., Cardenas, E., Cabrera, S., Hedlund, J., & Mouzon, J. (2016). Synthesis of zeolite y from diatomite as silica source. Microporous and Mesoporous Materials, 219, 29–37. https://doi.org/10.1016/j.micromeso.2015.07.015

Guo, S., & Shi, L. (2013). Synthesis of succinic anhydride from maleic anhydride on Ni/diatomite catalysts. Catalysis Today, 212, 137–141. https://doi.org/10.1016/j.cattod.2012.10.004

He, S., Zheng, X., Mo, L., Yu, W., Wang, H., & Luo, Y. (2014). Characterization and catalytic properties of Ni/SiO2 catalysts prepared with nickel citrate as precursor. Materials Research Bulletin, 49(1), 108–113. https://doi.org/10.1016/j.materresbull.2013.08.051

Huang, F., Wang, R., Yang, C., Driss, H., Chu, W., & Zhang, H. (2016). Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, 25(4), 709–719. https://doi.org/10.1016/j.jechem.2016.03.004

Jabbour, K., El Hassan, N., Davidson, A., Massiani, P., & Casale, S. (2015). Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane. Chemical Engineering Journal, 264, 351–358. https://doi.org/10.1016/j.cej.2014.11.109

Li, B., Huang, H., Guo, Y., & Zhang, Y. (2015). Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity. Applied Surface Science, 353, 1179–1185. https://doi.org/10.1016/j.apsusc.2015.07.049

Li, D., Chen, Y., Wang, H., Qiu, X., Alshameri, A., Ma, Y., Liu, Y., & Yan, C. (2014). An investigation into formation mechanism of amorphous hierarchical porous carbons by diatomite as template: Effect of furfuryl alcohol and glucose. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2742–2748. https://doi.org/10.1016/j.jtice.2014.05.010

Liu, H., Yao, L., Hadj Taief, H. B., Benzina, M., Da Costa, P., & Gálvez, M. E. (2018). Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catalysis Today, 306, 51–57. https://doi.org/10.1016/j.cattod.2016.12.017

Luisetto, I., Sarno, C., De Felicis, D., Basoli, F., Battocchio, C., Tuti, S., Licoccia, S., & Di Bartolomeo, E. (2017). Ni supported on γ-Al2O3 promoted by Ru for the dry reforming of methane in packed and monolithic reactors. Fuel Processing Technology, 158, 130–140. https://doi.org/10.1016/j.fuproc.2016.12.015

Medeiros, R. L. B. A., Macedo, H. P., Melo, V. R. M., Oliveira, Â. A. S., Barros, J. M. F., Melo, M. A. F., & Melo, D. M. A. (2016). Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, 41(32), 14047–14057. https://doi.org/10.1016/j.ijhydene.2016.06.246

Mette, K., Kühl, S., Tarasov, A., Düdder, H., Kähler, K., Muhler, M., Schlögl, R., & Behrens, M. (2015). Redox dynamics of Ni catalysts in CO2 reforming of methane. Catalysis Today, 242(Part A), 101–110. https://doi.org/10.1016/j.cattod.2014.06.011

Nascimento, C. R., Sobrinho, E. M. O., Assis, R. B., Fagundes, R. F., Bieseki, L., & Pergher, S. B. C. (2014). Síntese da zeólita A utilizando diatomita como fonte de sílicio e alumínio. Ceramica, 60(353), 63–68. https://doi.org/10.1590/S0366-69132014000100009

Németh, M., Schay, Z., Srankó, D., Károlyi, J., Sáfrán, G., Sajó, I., & Horváth, A. (2015). Impregnated Ni/ZrO2 and Pt/ZrO2 catalysts in dry reforming of methane: Activity tests in excess methane and mechanistic studies with labeled 13CO2. Applied Catalysis A: General, 504, 608–620. https://doi.org/10.1016/j.apcata.2015.04.006

Pirsaraei, A., Reza, S., Hasan, A. M., Ahmad, J. J., Zohreh, F., & Jafar, T. (2015). The Effect of Acid and Thermal Treatment on a Natural Diatomite. Chemistry Journal, 1(4), 144–150. http://www.aiscience.org/journal/cjhttp://creativecommons.org/licenses/by-nc/4.0/

Romário, C. P. C. et al. (2021). Development of CuO-based oxygen carriers supported on diatomite and kaolin for chemical looping combustion. Research, Society and Development, 10(4), e15110412831. https://doi.org/dx.doi.org/10.33448/rsd-v10i4.12831

Taherian, Z., Yousefpour, M., Tajally, M., & Khoshandam, B. (2017). Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous and Mesoporous Materials, 251, 9–18. https://doi.org/10.1016/j.micromeso.2017.05.027

Tanniratt, P., Wasanapiarnpong, T., Mongkolkachit, C., & Sujaridworakun, P. (2016). Utilization of industrial wastes for preparation of high performance ZnO/diatomite hybrid photocatalyst. Ceramics International, 42(15), 17605–17609. https://doi.org/10.1016/j.ceramint.2016.08.074

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Wang, M., Zhang, Q., Zhang, T., Wang, Y., Wang, J., Long, K., Song, Z., Liu, X., & Ning, P. (2017). Facile one-pot synthesis of highly dispersed Ni nanoparticles embedded in HMS for dry reforming of methane. Chemical Engineering Journal, 313, 1370–1381. https://doi.org/10.1016/j.cej.2016.11.055

Wang, X., Wen, W., Mi, J., Li, X., & Wang, R. (2015). The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Applied Catalysis B: Environmental, 176–177, 454–463. https://doi.org/10.1016/j.apcatb.2015.04.038

Wang, Y., Zhang, D., & Cai, J. (2016). Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite. Applied Surface Science, 363, 122–127. https://doi.org/10.1016/j.apsusc.2015.11.148

Xia, Y., Jiang, X., Zhang, J., Lin, M., Tang, X., Zhang, J., & Liu, H. (2017). Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application. Applied Surface Science, 396, 1760–1764. https://doi.org/10.1016/j.apsusc.2016.11.222

Yasyerli, S., Filizgok, S., Arbag, H., Yasyerli, N., & Dogu, G. (2011). Ru incorporated Ni-MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature. International Journal of Hydrogen Energy, 36(8), 4863–4874. https://doi.org/10.1016/j.ijhydene.2011.01.120

Yu, J., Zhang, Z., Dallmann, F., Zhang, J., Miao, D., Xu, H., Goldbach, A., & Dittmeyer, R. (2016). Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis. Applied Catalysis B: Environmental, 198, 171–179. https://doi.org/10.1016/j.apcatb.2016.05.050

Zhang, R. J., Xia, G. F., Li, M. F., Wu, Y., Nie, H., & Li, D. D. (2015). Effect of support on catalytic performance of Ni-based catayst in methane dry reforming. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 43(11), 1359–1365. https://doi.org/10.1016/S1872-5813(15)30040-2

Downloads

Published

2021-09-04

Issue

Section

Exact and Earth Sciences

How to Cite

A influência de Ni e Co suportados em diatomita brasileira para produção de H2 via reforma a seco do metano. Research, Society and Development, [S. l.], v. 10, n. 11, p. e388101119729, 2021. DOI: 10.33448/rsd-v10i11.19729. Disponível em: https://rsdjournal.org/rsd/article/view/19729. Acesso em: 29 jul. 2025.