Enzymatic processes in oil bioremediation and phytoremediation in mangrove sediments: a review
DOI:
https://doi.org/10.33448/rsd-v10i11.19944Keywords:
Mangrove; Sediment; Petroleum; Remediation; Enzymes.Abstract
Several oil spills in seas and oceans have occurred in recent decades, mainly affecting estuaries and mangroves. Environmental accidents involving petroleum, its derivatives and the waste generated have been a growing concern, as petroleum hydrocarbons are considered toxic organic contaminants that are difficult to degrade. Biotechnological advances have led researchers to adopt bioremediation and phytoremediation as potentially effective alternatives for contaminated soils and sediments, and the use of enzymes has been adopted as a strategy beyond the use of plants and microorganisms in bioremediation. This study consists of a literature review based on books, articles, theses, dissertations and websites, in order to gather and evaluate enzymatic processes in phytoremediation and phytoremediation in environments impacted by petroleum activities.
References
Acevedo, F. Pizzul, L., Castillo, M., González, M. E., Cea, M., Gianfreda, L., Diez, M. C. (2010). Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere, 80 (3), 271–278. doi: 10.1016/j.chemosphere.2010.04.022.
Ajona, M., & Vasanthi, P. (2021). Bioremediation of petroleum contaminated soils – A review. Materials Today: Proceedings, (45), 7117–7122. doi: https://doi.org/10.1016/j.matpr.2021.01.949.
Alfaro-Espinoza, G & Ullrich, M. S. (2015). Bacterial N2-fixation in mangrove ecosystems: insights from a diazotrophâ mangrove interaction. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00445.
Álvarez-Barragán, J., Cravo-Laureau, C., Wick, L. Y., & Duran, R. (2021). Fungi in PAH-contaminated marine sediments: Cultivable diversity and tolerance capacity towards PAH. Marine Pollution Bulletin, 164. doi: https://doi.org/10.1016/j.marpolbul.2021.112082.
AMAP. (1998). Chapter 10: Petroleum Hydrocarbons. AMAP Assessment Report: Arctic Pollution Issues, 661–701. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5277590.
Aschenbroich, A., Marchand, C., Molnar, N, Deborde, J., Hubas, C., Rybarczyk, H., Meziane, T. (2015). Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia). Science of The Total Environment, 512(513), 296–307. doi:10.1016/j.scitotenv.2014.12.082.
Beiras, R., (2018). Chapter 7 - Hydrocarbons and Oil Spills. Sources, Fate and Effects of Pollutants in Coastal Ecosystems, 89-106. doi: https://doi.org/10.1016/B978-0-12-813736-9.00007-6.
Bianco, R., Raceas, M., Papiro, S., Esposito, G. (2018). Chapter 7: Hydrocarbons and Oil. Spills, Sources, Fate and Effects of Pollutants in Coastal Ecosystems (ed.), pp. 89-106.doi: https://doi.org/10.1016/B978-0-12-813736-9.00007-6.
Biazon, C. L.; Barreto, G. O.; de Oliveira, E. C. (2015). The Impact of the Recovery in the Uncertainty Evaluation of the Oil and Grease by Extraction and Gravimetry in Produced Waters Derived From the Petroleum Extraction Process. Petroleum Science and Technology, 33(4), 487–493. doi:10.1080/10916466.2014.987299.
Biko, O. , Viljoen-Bloom, Marinda, Van zyl, Willem H. (2020). Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme and Microbial Technology, (141), 109669. doi: 0141-0229. doi: 10.1016/j.enzmictec.2020.109669.
Bulai, I. S., Adamu, H., Umar, Yuguda, A., Sabo, A.(2021). Biocatalytic remediation of used motor oil-contaminated soil by fruit garbage enzymes. Journal of Environmental Chemical Engineering, v. 9, n. 4, p. 105465. ISSN: 22133437. doi: 10.1016/j.jece.2021.105465.
Costa, R. (2016). Degradação enzimática de clorofenol em microrreator. 84f. Dissertação (mestrado) – Universidade de São Paulo. Departamento de Engenharia Química. São Paulo.
Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, (8), 309–326. doi: 2352-1864. doi: 10.1016/j.eti.2017.08.002.
Cui, L., Sun, H., Du, X., Feng, W., Wang, Y., Zhang, J., Jiang, J. (2021). Dynamics of labile soil organic carbon during the development of mangrove and salt marsh ecosystems. Ecological Indicators, 129, 107875. doi: https://doi.org/10.1016/j.ecolind.2021.107875.
Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715–719. doi: https://doi.org/10.1104/pp.110.3.715.
Dai, X., LV, J., Yan, G., Chen, C., Guo, S., Fu, Pengcheng. (2020). Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. Bioresource Technology, (309), 123305. doi:0960-8524. doi: 10.1016/j.biortech.2020.123305.
Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36–50.
Deng, Z & Cao, L. (2017). Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, [S. l.], (168), 1100–1106. doi: 10.1016/J.chemosphere.2016.10.097.
Dindar, E., Topaç Şağban, F. O. & Başkaya, H. S. (2015). Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration and Biodegradation, ( 105), 268–275, 2015. doi: 10.1016/j.ibiod.2015.09.011.
Duan, D., Lei, P., Lan, W., Li, T., Zhang, H., Zhong, H., & Pan, K. (2020). Litterfall-derived organic matter enhances mercury methylation in mangrove sediments of South China. Science of the Total Environment, 765, 142763. doi: https://doi.org/10.1016/j.scitotenv.2020.142763.
Duke, N. C. (2016). Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Marine Pollution Bulletin, (109), 700-715. doi: 10.1016/j.marpolbul.2016.06.082.
Duleba, W., Teodoro, A. C., Debenay, J., Alves M., Maria V., Gubitoso, S., Pregnolato, L. A., Lerena, L. M., Prada, S. M., Bevilacqua, J. E., Dias, J. M. (2018). Environmental impact of the largest petroleum terminal in SE Brazil: A multiproxy analysis based on sediment geochemistry and living benthic foraminifera. PLOS ONE, 13(2), e0191446–. doi:10.1371/journal.pone.0191446.
Dunn R. J. K., Welsh D. T., Teasdale, P. R., Lee S. Y., Lemckert C. J., Meziane T.(2008). Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers. Cont. Shelf Res., (28), 2535-2549. doi: https://doi.org/10.1016/j.csr.2008.04.009.
Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, (23), 28–36. doi: https://doi.org/10.1016/j.ejbt.2016.07.003.
Feng, N. X., Yu, J., Zhao, H. M., Cheng, Y. T., Mo, C. H., Cai, Q. Y., Li, Y. W., Li, H., Wong, M. H. (2017). Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Science of The Total Environment, v. 583, p. 352–368, 2017. ISSN: 0048-9697. doi: 10.1016/j.scitotenv.2017.01.075.
Franco, E. (2018). Modelagem cinética microbiana aplicada na degradação do petróleo de campos presente no sedimento de manguezal. 88f. Dissertação (mestrado) – Universidade Federal da Bahia. Programa de Pós-graduação em Petróleo e Meio Ambiente. Salvador, Bahia.
Freitas, T. O. P., Pedreira, R. M. A., & Hatje, V. (2021). Distribution and fractionation of rare earth elements in sediments and mangrove soil profiles across an estuarine gradient. Chemosphere, 264. doi: https://doi.org/10.1016/j.chemosphere.2020.128431.
Garcia, K.C., La Rovere, E.L. (2011). Petróleo: acidentes ambientais e riscos à biodiversidade. Interciência, Rio de Janeiro (232 p).
Haider, F. U., Ejaz, M., Cheema, S. A., Khan, M. I., Zhao, B., Liqun, C., Salim, M. A., Naveed, M., Khan, N., Núñez-Delgado, A., & Mustafa, A. (2021). Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environmental Research, 197. (doi: https://doi.org/10.1016/j.envres.2021.111031.
Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177–192. doi: https://doi.org/10.1038/nrmicro2519.
Ho, Y. N., Hsieh, J. L. & Huang, C. C. (2013). Construction of a plant–microbe phytoremediation system: Combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresource Technology, (145), 43–47. doi: 10.1016/j.biortech.2013.02.051.
HofrichteR, M. (2012). Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30 (4), 454–466. doi: 10.1016/S0141-0229(01)00528-2.
Hou, J., Wang, Q., Liu, W., Zhong, D., Ge, Y., Christie, P., & Luo, Y. (2021). Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. Science of The Total Environment, (792), 148411. doi: https://doi.org/10.1016/j.scitotenv.2021.148411.
Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G., Zeshan, & Yousaf, S. (2018). Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environmental and Experimental Botany, (153), 80–88. doi: https://doi.org/10.1016/j.envexpbot.2018.05.012.
ITOPF. (2014). Oiled Mangrove, em 22 May 2014.< https://www.itopf.org/knowledge-resources/library/image-library/oiled-mangrove/>.
Kadri, T., Magdouli, S., Rouissi, T., & Brar, S. K. (2018). Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochemical Engineering Journal, (132), 279–287. doi: https://doi.org/10.1016/j.bej.2018.01.014.
Kathiresan, K., Saravanakumar, K., Anburaj, R., Gomathi, V., Abirami, G., Sahu, Sk, & Anandhan, S. (2011). Atividade de enzimas microbianas em folhas em decomposição de manguezais. International Journal of Advaced Biotechnology and Research, 2 (3), 382-389.
Khan, S., Afzal, M., Iqbal, S. & Khan, Q. M. (2013). Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90 ( 4), 1317–1332. doi: 10.1016/j.chemosphere.2012.09.045.
Kotoky, R., Rajkumari, J. & Pandey, P. (2018). The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. Journal of Environmental Management, (217), 858–870. doi: 10.1016/j.jenvman.2018.04.022.
Kucharzyk, K. H., Benotti, M., Darlington, R. & Lalgudi, R. (2018). Enhanced biodegradation of sediment-bound heavily weathered crude oil with ligninolytic enzymes encapsulated in calcium-alginate beads. Journal of Hazardous Materials, (357), 498–505, 2018. doi: 10.1016/j.jhazmat.2018.06.036.
Kumar, A., Yadav, N., Mondal, R., Kour, D., Subrahmanyam, G., Shabnam, A., Khan, S., Kumar, K., Sharma, G., Pinto, M., Fagodiya, K., Guptard., Hota, S., Malyan, S. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, (284), 131325. doi: https://doi.org/10.1016/j.chemosphere.2021.131325.
Liao, Q., Liu, H., Lu, C., Liu, J., Waigi, M. G., Ling, W. (2020). Root exudates enhance the PAH degradation and degrading gene abundance in soils. Science of The Total Environment, (764), 144436, 2021. doi: 10.1016/j.scitotenv.2020.144436.
Libralato, G., Minetto, D., Lofrano, G., Guida, M., Carotenuto, M., Aliberti, F., Conte, B.; Notarnicola, M. (2018). Toxicity assessment within the application of in situ contaminated sediment remediation technologies: A review. Science of The Total Environment, (621), 85–94, 2018. doi: 10.1016/j.scitotenv.2017.11.229.
Lim, M. W., Lau, E. Von, & Poh, P. E. (2016). A comprehensive guide of remediation technologies for oil contaminated soil — Present works and future directions. Marine Pollution Bulletin, 109(1), 14–45. doi: https://doi.org/10.1016/j.marpolbul.2016.04.023.
Lima, V. H. R., Fia, R., Sousa, L. S., Silva, R. A. & Carvalho, M. V. (2019). Avaliação do capim-vetiver e capim-marandu na remediação de solo contaminado com óleo. A contaminação por poluentes orgânicos perigosos, os derramam. Sustentare. 3(1), 122–42. doi: http://dx.doi.org/10.5892/st.v3i1.5712.
Liu, R., Zhao, L., Jin, C., Xiao, N., Jadeja, R. N., Sun, T. (2014). Enzyme responses to phytoremediation of PAH-contaminated soil using echinacea purpurea (L.). Water, Air, and Soil Pollution, [S. l.], v. 225, n. 12, p. 1–11. doi: 10.1007/s11270-014-2230-4.
Loeppmann, S., Blagodatskaya, E., Pausch, J. & Kuzyakov, Y. (2016). Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biology and Biochemistry, (92), 111-118. doi:10.1016/j.soilbio.2015.09.020.
Madumini Senanayake, N. D., Ratnayake, A. S., Premila Wijesinghe, U. M., & Ratnayake, N. P. (2021). Geochemistry and sedimentology of tropical mangrove sediments along the southwest coast of Sri Lanka: Fingerprints for development history of wetlands. Regional Studies in Marine Science, 46, 101884. doi: https://doi.org/10.1016/j.rsma.2021.101884.
Majeau, J. A., Brar, S. K. &Tyagi, R. D. (2009). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101( 7), 2331–2350, 2010. ISSN: 09608524. doi: 10.1016/j.biortech.2009.10.087.
Maletić, S., Beljin,J., Rončević, S., Grgić, M., Dalmacija, B. (2018). State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. Journal of Hazardous Materials, (365), 467-482.
Martin, B. C., George, S. J., Price, C. A., Ryan, M. H., Tibbett, M. (2014). The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Science of The Total Environment, (472), 642–653. doi: 10.1016/j.scitotenv.2013.11.050.
McIntosh, P., Schulthess, C. P., Kuzovkina, Y. A. & Guillard, K. (2017). Bio- and Phytoremediation of Total Petroleum Hydrocarbons (TPH) Under Various Conditions. International Journal of Phytoremediation, 00–00. doi:10.1080/15226514.2017.1284753.
Michel J. & Rutherford N. (2014). Impactos, taxas de recuperação e opções de tratamento para óleo derramado em pântanos Mar. Pollut. Touro. (82), 19 de – 25. doi: 10.1016/j.marpolbul.2014.03.030.
Miri, S., Perez, J. A. E., Brar, S. K., Rouissi, T., & Martel, R. (2021). Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. Environmental Pollution, 117678. doi: https://doi.org/10.1016/j.envpol.2021.117678.
Mohsenzadeh, F., Chehregani Rad, A., Akbari, M. (2012). Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iranian Journal of Environmental Health Science and Engineering, 9 (26), 26, 2012. doi: 10.1186/1735-2746-9-26.
Moreira, I. T. A., Oliveira, O. M. C., Silva, C. S., Rios, M. C., Queiroz, A. F. S., Assunção, R. V. & Carvalho, A. P. N. (2015). Chemometrics applied in laboratory study on formation of oil-spm aggregates (OSA) – a contribution to ecological evaluation. Microchemical Journal, 118, 198-202.
Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. F. S., Ferreira, S. L. C., Martins, C. M. S., Silva, A. C. M., Falcão, B. A. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, 67( 1–2), 130–136. doi: 10.1016/j.marpolbul.2012.11.024.
Moreira, I., Oliveira, O. M., Triguis, J, Santos, A., Queiroz, A., Martins, C., Silva, C., Jesus, R. (2011). Phytoremediation Using Rizophora mangle L. in Mangrove Sediments Contaminated by Persistent Total Petroleum Hydrocarbons (TPH’s). Microchem, (4), 376–382.
Moreira, I., Oliveira, O., Triguis, J., Santos, A., Azwell, T., Queiroz, A., Nano, R., Souza, E., Anjos, J., Assunção, R., Guimarães, I. (2016). Strategies of Bioremediation for the Degradation of Petroleum Hydrocarbons in the Presence of Metals in Mangrove Simulated. Clean -Soil, Air, Wate, (44) 631-637.
Moreira, I.; Oliveira, O.; Triguis, J.; santos, A.; Queiroz, A.; Ferreira, S.; Martins, C.; Silva, A.; Falcão. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, ( 67), 130–136.
Mukherjee, N., Sutherland, S., Khan, M., Berger, U., Schmitz, N., Dahdouh-Guebas, F.(2014). Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate time frame for recovery . Ecology and Evolution, 4(11), 2247– 2262. doi: 10.1002/ece3.1085
Niu, J., Dai, Y., Guo, H., Xu, J., Shen, Z. (2013). Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. Journal of Hazardous Materials, [S. l.], (248–249)1, 254–260. doi: 10.1016/j.jhazmat.2013.01.017.
Oliveira, O. M. C., Queiroz, A. F. S., Cerqueira, J. R., Soares, S. A R., Garcia, K. S., Filho, A. P., Rosa, M. L. S., Suzart, C. M., Pinheiro, L. L. & Moreira, I. T. A. (2020) Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, 160, 111597.
Ortega, P., Vitorino, H., Moreira, R., Pinheiro, M., Almeida, A., Custódio, M., Zanotto, F. (2017). Physiological differences in the crab Ucides cordatus from two populations inhabiting mangroves with different levels of cadmium contamination. Environmental Toxicology, 2(36), 361-371. doi: https://doi.org/10.1002/etc.3537.
Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology and Innovation, 17, 100526. doi: https://doi.org/10.1016/j.eti.2019.100526.
Ouvrard, S., Leglize, P. & Morel, J. L. (2012). PAH Phytoremediation: Rhizodegradation or Rhizoattenuation? International Journal of Phytoremediation, 16 (1), 46–61, 2014. doi: 10.1080/15226514.2012.759527.
Parvanelli, D & Loch, C. (2018). Mangrove spectra changes induced by oil spills monitored by image differencing of normalised indices: tools to assist delimitation of impacted. Remote Sensing Applications: society and Environment, (12), 78-88.
Peixoto, R. S., Vermelho, A. B. & Rosado, A. S. (2011). Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Research, Hindawi Limited, 2011. doi: 10.4061/2011/475193.
Prashanthi, M., Sundaram, R., Jeyaseelan, A., & Kaliannan, T. (2017). Environmental Science and Engineering] Bioremediation and Sustainable Technologies for Cleaner Environment. Bioremediation—A Ecosafe Approach for Dairy Effluent Treatment., 45–50. doi:10.1007/978-3-319-48439-6_4.
Premnath, N., Mohanrasu, K., Rao, R., Dinesh, G., Prakash, G., Ananthi, V., Ponnuchamy, K., Muthusamy, G., Arun, A. (2021). A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation Chemosphere, (280), 130608. doi: https://doi.org/10.1016/j.chemosphere.2021.130608.
Rahman, M. S., Donoghue, D. N. M., & Bracken, L. J. (2021). Is soil organic carbon underestimated in the largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. Catena, (200), 105159. doi: https://doi.org/10.1016/j.catena.2021.105159.
Ranjan, R., Routh, J., Ramanathan, A. (2020). Bulk organic matter characteristics in the Pichavaram mangrove – estuarine complex, south-eastern India. Applied Geochemistry, 25(8), 1176-1186. doi: https://doi.org/10.1016/j.apgeochem.2010.05.003.
Razavi, B., Blagodatskaya, E. & Kuzyakov, Y. (2016). Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biology and Biochemistry, (97), 15-22. doi: https://doi.org/10.1016/j.soilbio.2016.02.018.
Sánchez, C. (2020). Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, (40), 107501. doi: https://doi.org/10.1016/j.biotechadv.2019.107501.
Santos H., Carmo F., Paes J.S, Rosado A., Peixoto R. (2011). Biorremediação de manguezais impactados por petróleo Água Ar Solo Poluição. (216), 329 – 350.
Saravanakumar, K., Anburaj, R., Gomathi, V., & Kathiresan, K. (2016). Ecologia de micróbios do solo em uma floresta de mangue tropical na costa sudeste da Índia. Biocatalysis and Agricultural Biotechnology, (8), 73-85. doi:10.1016/j.bcab.2016.08.01 .
Schmall M. Cinética e Reatores: teoria e exercícios – 2ª ed. Rio de Janeiro, Editora Synergia: COPPE/UFRJ: FAPERJ, 2013, 678 p.
Schmitt, K. & Duke, N. (2015). Mangrove management, assessment and monitoring, Tropical Forestry Handbook, eds L. Pancel and M. Köhl (Berlin; Heidelberg: Springer-Verlag), 30.
Sharma, B, Dangi, A. K. & Shukla, P. (2017). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, Academic Press. doi: 10.1016/j.jenvman.2017.12.075.
Silva, J. (2016). Eficiência do mangue vermelho (Rhizophora mangle) na fitorremediação de sedimentos de manguezal contaminados por petróleo. 99f. Monografia (graduação em oceonografia) – Universidade Federal da Bahia. Instituto de Geociências. Salvador, Bahia.
Silva, J. (2019). Fitorremediação de hidrocarbonetos policíclicos aromáticos por Rhizophora mangle em sedimento de manguezal contaminado por petróleo bruto. 46f. Dissertação (mestrado) – Universidade Federal da Bahia. Programa de Pós-graduação em Petróleo e Meio Ambiente. Salvador, Bahia.
Silva, M. M., Leao, D. J., Moreira, I. T. A., Oliveira, O. M. C., Queiroz, A. F. S. & Ferreira, S. L. C. (2015). Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environmental Science and Pollution Research, 22, 8386-8391.
Singh, J. S. & Singh, D. P. (2017) Methanotrophs: An emerging bioremediation tool with unique broad spectrum methane monooxygenase (MMO) enzyme. In: Agro-Environmental Sustainability. [s.l.] : Springer International Publishing. (2), 1–18. doi: 10.1007/978-3-319-49727-3_1.
Singh, S., Melo, J. S., Eapen, S., & D’Souza, S. F. (2008). Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicology and Environmental Safety, 71(3), 671–676. doi: https://doi.org/10.1016/j.ecoenv.2007.10.023.
Spalding, M., Kainuma, M., Collins, L., 2010. World Atlas of Mangroves. Earthscan, London. doi: https://doi.org/10.4324/9781849776608.
Steliga, T., & Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety, (194)110409. doi: https://doi.org/10.1016/j.ecoenv.2020.110409.
Tan, X., Nie, Y., Ma, X., Guo, Z., Liu, Y., Tian, H., Megharaj, M., Shen, W., He, W. (2021). Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics. Science of The Total Environment, (770) 144500. doi: https://doi.org/10.1016/j.scitotenv.2020.144500.
Tischer, A., Sehl, L., Meyer, U.-N.N., Kleinebecker, T., Klaus, V., Hamer, U., 2019. Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species. Plant Soil 437, 215–239. https://doi.org/10.1007/s11104- 019-03970-w.
Tong, T., Li, R., Chai, M., Wang, Q., Yang, Y., & Xie, S. (2021). Metagenomic analysis of microbial communities continuously exposed to Bisphenol A in mangrove rhizosphere and non-rhizosphere soils. Science of The Total Environment, (792), 148486. doi: https://doi.org/10.1016/j.scitotenv.2021.148486.
Varjani, S.; Upasani, V. N. (2021) Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresource Technology, (319), 124240. doi: 10.1016/j.biortech.2020.124240.
Verâne, J., Santos, N., Silva, V., Almeida, M., Oliveira, O., Moreira, I. (2020). Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, (160), 111687. doi: https://doi.org/10.1016/j.marpolbul.2020.111687.
Volkman J.K, Johns R.B, Gillan F.T, Perry G.J, Bavor Jr H.J. (1980). Lípidos microbianos de um sedimento intertidal. Ácidos graxos e hidrocarbonetos Geochim. Cosmochim. Acta , (44), 1133 – 1143. doi: 10.1016/0016-7037(80)90067-8.
Wang, B., Xie, H. L., Ren, H. Y., Li, X., Chen, L., & Wu, B. C. (2019). Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields. Journal of Cleaner Production, (233), 13–22. doi: https://doi.org/10.1016/j.jclepro.2019.05.301.
Wang, H., Gilbert, J. A., Zhu, Y., Yang, X. (2018). Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of The Total Environment, (631-632), 1342–1349. doi:10.1016/j.scitotenv.2018.03.102 .
Wang, J., Li, K., He, Y., Liu, X., Wang, P., Xu, L., Yan, J., & Yan, Y. (2021). Bi-enzyme directed self-assembled system toward biomimetic synthesis of fatty acid hydroperoxides like soybean. Composites Part B: Engineering, (222), 109091. doi: https://doi.org/10.1016/j.compositesb.2021.109091.
Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., Lam, S. S., Sonne, C.(2021). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, (403), 123658, 2021. ISSN: 0304-3894. doi: 10.1016/j.jhazmat.2020.123658.
Wolfgang D., Doris F., Martin S., Petra M. B., Peter K. (1995). Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon-polluted soils. , 35(1-3), 301–316. doi:10.1016/0964-8305(95)00040-c.
Wu, Manli; Li, Wei, Dick, Warren A., Ye, Xiqiong, Chen, Kaili, Kost, David, Chen, Liming (2017). Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, (169), 124–130. doi:10.1016/j.chemosphere.2016.11.059.
Zhong H., Kraemer L. & Evans D. (2013). Influence of contact time and sediment composition on the bioavailability of Cd in sediments. , 173, doi:10.1016/j.envpol.2012.09.021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Eliseu Melo Carvalho Lacerda; Willian Lázaro Alves Muniz de Santana; Milton Santos Cardoso Filho; Naiara Cristina Pereira dos Santos; Ícaro Thiago Andrade Moreira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.