Comparison between two multivariate analyses for the evaluation of genetic divergence for carcass and meat quality traits in alternative lines of chicken

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20467

Keywords:

Principal Component; Canonical variables; Meat trait; Quality traits.

Abstract

The univariate analysis is becoming harder to use due the increasing number of characteristics of economic importance in agricultural industry. The multivariate approach provides an answer to this issue, allowing to analyze several traits when comparing different methodologies, genetics and products. This study aimed to use and compare the canonical variable analysis (CVA) and principal component analysis (PCA) to evaluate 7 genotypes of alternative lines of chicken (Caboclo, Carijó, Colorpak, Gigante Negro, Pesadão Vermelho, Naked Neck and Tricolor). The study evaluated 840 male chicks reared at 91 days from these genotypes, in a completely randomized design with 4 replicates per genotype. Different traits (23) were measured, and only 7 remained relevant after the multivariate approach: Carcass yield, Breast Yield, Back Yield, Cooking Loss, lightness, yellowness and water holding capacity. Both analyses remained with two variables explaining the variating. The Pearson correlation was used to measure the traits responsible for the most variance between genotypes. On the principal component cooking loss, carcass and breast yields, and the color parameters lightness and yellowness were the most relevant, while on canonical variables it was carcass yield, breast yield, lightness, yellowness and back yield. Both analysis resulted in similar conclusion, allowing to classify the genotypes in three major groups: 1 (Pesadão vermelho, Carijó, Colorpak, Nacked Neck), 2 (Gigante Negro and Caboclo) and 3 (Tricolor). PCA and CVA facilitate the interpretation of data with several traits of importance, showing the main traits responsible for genetic divergence.

References

Ajayi, O. O., Adeleke, M. A., Sanni, M. T., Yakubu, A., Peters, S. O., Imumorin, I. G., Ozoje, M. O., Ikeobi, C. O. N., & Adebambo, O. A. (2012). Application of principal component and discriminant analyses to morpho-structural indices of indigenous and exotic chickens raised under intensive management system. Tropical Animal Health and Production 44(6):1247–1254. 10.1007/s11250-011-0065-1

Almeida, E. C. J., Carneiro, P. L. S., Wenceslau, A. A., Farias Filho, R. V. & Malhado, C. H. M. (2013). Características de carcaça de galinha naturalizada Peloco comparada a linhagens de frango caipira. Pesquisa Agropecuária Brasileira 48(11):1517–1523. https://doi.org/10.1590/S0100-204X2013001100013

Bayyurt, L., Akdag, A. & Tirink, C. (2018). Canonical Correlation for Estimation of Relationship Between some Characteristics and Color of Broiler Meat. Journal of Agriculture and Veterinary Science. 11(11): 61-65. 10.9790/2380-1111026165

Buzanskas, M. E., Savegnago, R. P., Grossi, D. A., Venturini, G. C., Queiroz, S. A., Silva, L. O. C., Júnior, R. A. A. T., Munari, D. P., & Alencar, M. M. (2013). Genetic parameter estimates and principal component analysis of breeding values of reproduction and growth traits in female Canchim cattle. Reproduction, Fertility and Development 25(5):775. 10.1071/RD12132

Hongyu, K., Sandanielo, V. L. M. & Oliveira Junior, G. J. (2015). Análise de Componentes Principais: resumo teórico, aplicação e interpretação. E & S – Engineering and Science 5(1): 83-90. 10.18607/ES201653398

Jolliffe, I. T. (1973). Discarding Variables in a Principal Component Analysis. II: Real Data. Journal of the Royal Statistical Society 22(1):21-31. https://doi.org/10.2307/2346300

Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement 20(1):141–151. https://doi.org/10.1177/001316446002000116

Ogah, D. M. (2013). Canonical Discriminant Analysis of Morphometric Traits in Indigenous Chicken Genotype. Trakia Journal of Sciences 11(2): 170-174. Retrieved from: http://tru.uni-sz.bg/tsj/N2,%20Vol.11,%202013/D.M.Ogah.pdf

Ozsoy, A. N. (2019). Egg And Chick Quality Characteristics Of Meat Type Japanese Quail (Coturnix Coturnix Japonica) Line By Canonical Correlation Analysis. Fresenius Environmental Bulletin 28(4): 2582-2588. https://www.researchgate.net/publication/332671862_ EGG_AND_CHICK_QUALITY_CHARACTERISTICS_OF_MEAT_TYPE_JAPANESE_QUAIL_COTURNIX_COTURNIX_JAPONICA_LINE_BY_CANONICAL_CORRELATION_ANALYSIS

Paiva, A. L. C., Teixeira, R. B., Yamaki, M., Menezes, G. R. O., Leite, C. D. S & Torres, R. A. (2010). Análise de Componentes Principais em características de produção em aves de postura. Revista Brasileira de Zootecnia 39(2): 285-288. https://doi.org/10.1590/S1516-35982010000200009

Rajkumar U., Sharma R. P., Padhi M. K., Rajaravindra K. S., Reddy B. L. N., Niranjan M., Bhattacharya T. K., Haunshi S., & Chatterjee R. N. (2011). Genetic analysis of juvenile growth and carcass traits in a full diallel mating in selected colored broiler lines. Tropical Animal Health and Production 43(6):1129–1136. 10.1007/s11250-011-9812-6

Rosário, M.F., Silva, M.A.N., Coelho, A.A.D., Savino, V.J.M., & Dias, C.T.S. (2008). Canonical discriminant analysis applied to broiler chicken performance. Animal 2(3):419–424. 10.1017/S1751731107001012

Savegnago, R. P., Caetano S. L., Ramos, S. B., Nascimento, G. B., Schmidt, G. S., Ledur, M. C., & Munari, D. P. (2011). Estimates of genetic parameters, and cluster and principal components analyses of breeding values related to egg production traits in a White Leghorn population. Poultry Science 90(10):2174–2188. https://doi.org/10.3382/ps.2011-01474

Traldi, A. B., Silva, F. L., Hongyu, K., Sartorio, S. D., & Menten, J. F. M. (2018). Características dos componentes de ovos da linhagem Ross de idades diferentes via análise multivariada. Revista de Ciências Agrárias 41(2):557–566. https://doi.org/10.19084/RCA17145

Udeh, I. & Ogbu, C. (2011). Principal Component Analysis of Body Measurements In Three Strains of Broiler Chicken. Science World Journal. 6(2):11-14. https://www.ajol.info/index.php/swj/article/view/73851

Veloso, R. C., Ferreira, T. A., Drumond, E. S. C., Pires, A. V., Miranda, J. A., Costa, L. S., Abreu, L. R. A., Bonafé, C. M., Pinheiro, S. R. F., & Pereira, I. G. (2015). Divergência genética entre codornas de corte para características de produção. Ciência Rural 45(8):1509–1514. https://doi.org/10.1590/0103-8478cr20131590

Veloso, R. C., Ferreira, T. A., Winkelstroter, L. K., Silva, M. T. P., Pires, A. V., Torres Filho, R. de A., & Pinheiro, S. R. F. (2015). Genetic divergence between genotypes for male and female broilers. Ciência Rural 46(3):554–559. https://doi.org/10.1590/0103-8478cr20141466

Veloso, R. C., Pires, A. V., Torres Filho, R. A., Ferreira, T. A., Silva, M. T. P., Ballotin, L. M. V., Moreira, J., & Bonafé, C. M. (2015). Divergência genética entre genótipos de frangos tipo caipira. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 67(5):1353–1360. https://doi.org/10.1590/1678-4162-7351

Veloso, R. C., Winkelstroter, L. K., Silva M. T. P., Pires A. V., Torres Filho R. A., Pinheiro S. R. F., Costa L. S., & Amaral, J. M. (2016). Seleção e classificação multivariada de modelos não lineares para frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 68(1):191–200. https://doi.org/10.1590/1678-4162-7894

Venturini, G. C., Savegnago, R. P., Nunes, B. N., Ledur, M. C., Schmidt, G. S., El Faro L., & Munari D. P. (2013). Genetic parameters and principal component analysis for egg production from White Leghorn hens. Poultry Science 92(9):2283–2289. 10.3382/ps.2013-03123

Downloads

Published

22/09/2021

How to Cite

GOES, T. J. de F.; CASTILHO, C. del .; VELOSO, R. de C.; LEAL, G. R.; TORRES FILHO, R. de A. Comparison between two multivariate analyses for the evaluation of genetic divergence for carcass and meat quality traits in alternative lines of chicken. Research, Society and Development, [S. l.], v. 10, n. 12, p. e302101220467, 2021. DOI: 10.33448/rsd-v10i12.20467. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20467. Acesso em: 5 jan. 2025.

Issue

Section

Agrarian and Biological Sciences