Diffusive properties of colloidal charged particles in a quasi-one-dimensional confinement

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20595

Keywords:

Diffusion; Colloids; Single-File

Abstract

Diffusive properties of colloidal crystals in a quasi-one-dimensional channel are studied using numerical simulations. In order to study the influence of the attractive interaction between particles, it was introduced as an artificial dimensionless parameter β in the attractive term of the interaction potential. Changing the value of β, we can tune the effect of attraction between particles. We show that charged particles can change their mobility and the diffusion exponent of a one-chain like system. Variation on exponent diffusion can be induced by tuning the attractive part of interaction potential, making possible the existence of diffusive regimes between single-file diffusion (SFD) and normal diffusion, without changing confinement strength. System stoichiometry was changed, imposing particles in different arrangements in small clusters, which varies the diffusive behaviour. If stoichiometry is different from 1:1, it is possible to have particles with equal charges but with different mobilities. Another important observation is that mean-square displacement (MSD) for different charges is different for different values.

References

Carvalho, J. C. N., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2011). Yukawa particles confined in a channel and subject to a periodic potential: Ground state and normal modes. Phys. Rev. B 83(9), 094109. https://doi.org/10.1103/PhysRevB.83.094109

Carvalho, J. C. N., Nelissen, K., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2012). Diffusion in a quasi-one-dimensional system on a periodic substrate. Phys. Rev. E 85(2), 021136. https://doi.org/10.1103/PhysRevE.85.021136

Coupier, G., Jean, M. S., & Guthmann, C. (2006). Single file diffusion in macroscopic Wigner rings. Phys. Rev. E 73(3), 031112. https://doi.org/10.1103/PhysRevE.73.031112

Delfau, J.-B., Coste, C., & Saint Jean, M. (2011). Single-file diffusion of particles with long-range interactions: Damping and finite-size effects. Phys. Rev. E 84(1), 011101. https://doi.org/10.1103/PhysRevE.84.011101

Doyle, D. A., Cabral, J. M., Pfuetzner, A. K., Gulbis, J. M., Cohen, S. L, Chait, B. T., & MacKinnon, R. (1998). The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 280(5360), 69-77. https://doi.org/10.1126/science.280.5360.69

Ferreira, W. P., Carvalho, J. C. N., Oliveira, P. W. S., Farias G. A., & Peeters, F. M. (2008). Structural and dynamical properties of a quasi-one-dimensional classical binary system. Phys. Rev. B 77(1), 014112. https://doi.org/10.1103/PhysRevB.77.014112

Frenkel, D., & Smit, B. (2002). Understanding Molecular Simulation: from algorithms to application: Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-267351-1.X5000-7.

Galvan-Moya, J. E., Lucena, D., Ferreira, W. P., & Peeters, F. M. (2014). Magnetic particles confined in a modulated channel: Structural transitions tunable by tilting a magnetic field. Phys. Rev. E 89(3), 032309. https://doi.org/10.1103/PhysRevE.89.032309

Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54(2), 2084. https://doi.org/10.1103/PhysRevE.54.2084

Gillespie, D. T. (1996). The mathematics of Brownian motion and Johnson noise. Am. J. Phys. 64(3), 225. https://doi.org/10.1119/1.18210

Harris, E. T. (1965). Diffusion with “collisions” between particles. J. Appl. Probab 2(2), 323-338. https://doi.org/10.2307/3212197

Hernandez, J. A., & Fischbarg, J. (1992). Kinetic analysis of water transport through a single-file pore. J. Gen. Physiol. 99(4), 645-662. https://doi.org/10.1085/jgp.99.4.645

Kollmann, M. (2003). Single-file Diffusion of Atomic and Colloidal Systems: Asymptotic Laws. Phys. Rev. Letters 90(18), 180602. https://doi.org/10.1103/PhysRevLett.90.180602

Konig, H., Hund, R., Zahn, K., & Maret, G. (2005). Experimental realization of a model glass former in 2D. Eur. Phys. J. E 18, 287-293. https://doi.org/10.1140/epje/e2005-00034-9

Leunissen, M. E., Christova, C. G., Hynninen, A. P., Royall, C. P., Campbell, A. I., Imhof, A., Dijkstra, M., van Roji, R., & van Blaaderen, A. (2005). Ionic colloidal crystals of oppositely charged particles. Nature (London) 437, 235-240. https://doi.org/10.1038/nature03946

Lucena, D., Galvan-Moya, J. E., Ferreira, W. P., & Peeters, F. M. (2014). Single-file and normal diffusion of magnetic colloids in modulated channels. Phys. Rev. E 89(3), 032306. https://doi.org/10.1103/PhysRevE.89.032306

Lucena, D., Tkachenko, D. V., Nelissen, K., Misko, V. R., Ferreira, W. P., Farias, G. A., & Peeters, F. M. (2012). Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel. Phys. Rev. E 85(3), 031147. https://doi.org/10.1103/PhysRevE.85.031147

Meier M. W., & Olsen, H. D. (1989). Atlas of Zeolite framework types (second revised edition). Structure Commission of the international Zeolite Association 35(5), 875-875. https://doi.org/10.1002/aic.690350523

Morais-Cabral, J. H., Zhou, Y., & MacKinnon, R. (2001). Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37-42. https://doi.org/10.1038/35102000

Nelissen, K., Misko, V. R., & Peeters, F. M. (2007). Single-file diffusion of interacting particles in a one-dimensional channel. Europhys. Lett. 80(5), 56004. https://doi.org/10.1209/0295-5075/80/56004

Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S., & Murray, C. B. (2006). Structural diversity in binary nanoparticle superlattices. Nature (London) 439, 55-59. https://doi.org/10.1038/nature04414

Wei, Q.-H., Bechinger, C., & Leiderer, P. (2000). Single-File Diffusion of Colloids in One-Dimensional Channels. Science 287(5453), 625-627. 10.1126/science.287.5453.625

Downloads

Published

25/09/2021

How to Cite

LEITE, L. R. .; ARAÚJO, J. L. . B. de .; XAVIER, L. J. P. .; BESSA, V. H. L. .; CARVALHO, J. C. N.; CAMARÃO, D. de L. . Diffusive properties of colloidal charged particles in a quasi-one-dimensional confinement. Research, Society and Development, [S. l.], v. 10, n. 12, p. e403101220595, 2021. DOI: 10.33448/rsd-v10i12.20595. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20595. Acesso em: 4 jan. 2025.

Issue

Section

Exact and Earth Sciences