Prediction of productivity of papaya (Carica Papaya L.) by Artificial Neural Networks
DOI:
https://doi.org/10.33448/rsd-v10i12.20692Keywords:
Artificial intelligence; Papaya; Rural planning; Prediction.Abstract
The estimation of the productivity of papaya is important for the planning of rural producers, becoming an efficient and strategic tool in the decision making of agricultural production, especially with regard to post-harvest planning, storage and transportation. The objective of this study was to select Artificial Neural Network models with greater predictive capacity of the harvest for the papaya crop CNPMF-L78. A total of 352 plants were measured in a useful area of 2,112 m², with the plant descriptors and the characters related to fruit quality. The data were submitted to artificial neural network analysis using the R software. The best fits for estimating the productivity of papaya were considered for three layers of ANNs: input, intermediate, and output layers, testing the composition with one to 10 neurons in the intermediate layer. These models presented the lowest mean square errors, which corresponds to greater proximity between predicted and actual data, and therefore greater efficiency of the networks in predicting yields. By the coefficient of determination, the best fits were verified for reproductive characters R² = 0.99, vegetative characters provided R²= 0.54, while quality and yield characters enabled R²= 0.24. Productivity predictions for CNPMF-L78 papaya were obtained with high efficiency for reproductive characters by means of artificial neural networks.
References
Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. A., & Nanos, G. D. (2011). Previsão de rendimento em pomares de maçã com base no processamento de imagens. Agricultura de precisão, 12 (3), 448-456.
Azevedo, A. M. de, Silveira, V. A. da, Oliveira, C. M., Pedrosa, C. E., Lemos, V. T., Valadares, N. R., & Guimarães, A. G. (2019). Predição da área foliar em acerola por redes neurais e regressão múltipla. Revista Agrária Acadêmica, 2 (3), 96-105.
Bergmeir, C. N., & Benítez Sánchez, J. M., (2012). Redes neurais em R usando o simulador de redes neurais de Stuttgart: RSNNS. American Statistical Association, 46 (7), 1-26.
Donato, S. L. R., Arantes, A. D. M., Coelho, E., & Rodrigues, M. G. V. (2015). Considerações ecofisiológicas e estratégias de manejo da bananeira. In Embrapa Mandioca e Fruticultura-Artigo em anais de congresso (ALICE). In: Simpósio Brasileiro Sobre Bananicultura, 8, 2015, Montes Claros. Palestras e resumos... Belo Horizonte: Epamig, 2015. 1, 45-110.
Empresa Brasileira de Pesquisa Agropecuária (2020). VII Plano Diretor da Embrapa: 2020–2030 / Embrapa, (1), 31. autor.
Estação Meteorológica da Embrapa Mandioca e Fruticultura. (2020). Série Documentos (CNPMF). Recuperado de: https://www.embrapa.br/busca-de-eventos/-/evento/150188/estacao-meteorologica-da-embrapa-mandioca-e-fruticultura#sec-locais.
Garson, G. D. (1991). Interpretando pesos de conexão de redes neurais. International Journal of Artificial Intelligence and Expert Systems, 6 (1), 47-51.
Gemici, E., Yucedag, C., Ozel, H. B, & Imren, E. (2019). Predição da produção de cones em pomar de sementes clonais de pinheiro negro da Anatólia com rede neural artificial. Ecologia Aplicada e Pesquisa Ambiental, 17 (2), 2267-2273.
Gil, C. A. (2017). Como Elaborar Projetos de Pesquisa. 6, 192. Atlas.
Gholipoor, M., & Nadali, F. (2019). Previsão da produção de frutos de pimenta por meio de rede neural artificial. Scientia Horticulturae, 250, 249-253.
Guimarães, B. V. C., Donato, S. L. R., Aspiazú, I., & Azevedo, A. M. (2021). Predição da produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’ por redes neurais artificiais. Pesquisa Agropecuária Tropical, 51, e66008-e66008.
Guimarães, B. V., Donato, S. L., Azevedo, A. M., Aspiazú, I., & Junior, S. (2018). Predição da produtividade da palma forrageira 'Gigante' por caracteres morfológicos e redes neurais artificiais. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 315-319.
Heidari, P., Rezaei, M., & Rohani, A. (2020). Soft computing-based approach on prediction promising pistachio seedling base on leaf characteristics. Scientia Horticulturae, 274, 109647.
Cidades, I. B. G. E. (2020). Conheça cidades e Estados do Brasil. É o sistema agregador de informações do IBGE sobre os municípios e Estados do Brasil. Recuperado de https://cidades. ibge. gov. br.
Wrb, I. W. G. (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil resources reports, (106), 192.
Liu, L. W., Ma, X., Wang, Y. M., Lu, C. T., & Lin, W. S. (2021). Usando algoritmos de inteligência artificial para prever a taxa de crescimento do arroz (Oryza sativa L.) para agricultura de precisão. Computadores e Eletrônicos na Agricultur, 187, 106286.
Mamann, A. T. W., da Silva, J. A. G., Binelo, M. O., Scremin, O. B., Kraisig, A. R., Carvalho, I. R., & Argenta, C. V. (2019). Inteligência artificial simulando a produtividade de grãos durante o desenvolvimento do trigo considerando indicadores biológicos e ambientais. Journal of Agricultural Studies, 7 (3), 197-212.
Merladete, A. (2021). Digitalização da cadeia agrícola já é realidade Brasil afora. Agrolink. Recuperado de: https://www.agrolink.com.br/noticias/digitalizacao-
da-cadeia-agricola-ja-e-realidade-brasil-afora_454406.html.
Mishra, R., Varun, P., Hans, A. L, & Saxena, S. (2021). Análise da diversidade de begomovírus que infectam o mamão e seus mecanismos de resistência. Em Plant Virus-Host Interaction (pp. 507-524). Academic Press.
Niedbala, G. (2019). Modelo simples baseado em rede neural artificial para previsão antecipada e simulação de safra de colza de inverno. Journal of Integrative Agriculture,18 (1) 54-61.
Oliveira, A. M. G., Souza, L. D., & Coelho, E. F. (2010). Recomendações de calagem e adubação para mamoeiro. Embrapa Mandioca e Fruticultura. Comunicado técnico 139, ISSN- 1809- 502X.
Paliwal, M., & Kumar, U. A. (2011). Avaliando a contribuição das variáveis na rede neural feedforward. Applied Soft Computing, 11 (4), 3690-3696.
Pant, J., Pant, R. P., Singh, M. K., Singh, D. P., & Pant, H. (2021). Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings.
Team, R. C. (2018). R: A language and environment for statistical computing; 2018.
Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018.
Santos, J. F. S. (2020). Produção de soja, desigualdades no campo e mudanças climáticas na região do Matopiba. DRd-Desenvolvimento Regional em debate, 10, 535-561.
Soares, F. C., Robaina, A. D., Peiter, M. X., & Russi, J. L. (2015). Predição da produtividade da cultura do milho utilizando rede neural artificial. Ciência Rural, 45, 1987-1993.
Soares, J. D. R., Pasqual, M., Lacerda, W. S., Silva, S. O., & Donato, S. L. R. (2014). Comparação de técnicas utilizadas na predição da produtividade em bananeira. Scientia Horticulturae, 167 (1), 84-90.
Smith, D. W. (2014). Soil survey staff: keys to soil taxonomy. Washington: Natural Resources Conservation Service.
Vitor, A.B., Diniz, R. P., Morgante, C. V., Antônio, R. P., & de Oliveira, E. J. (2019). Modelos precoces de predição da produtividade de raízes de mandioca em diferentes regimes hídricos. Field Crops Research, 239, 149-158.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Leila Verena da Conceição; Cristina Ferreira Nepomuceno; Bruno Vinícius Castro Guimarães; Sebastião de Oliveira e Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.