Hygienic-sanitary quality of ready-to-eat salmon sashimi (Salmo Salar)
DOI:
https://doi.org/10.33448/rsd-v10i12.20900Keywords:
Brazil; Raw fish; Food security; Consumption; Bacterium; Antibiotics.Abstract
Fifty sashimi samples from 5 restaurants were characterized for enumeration of Aerobic Psychrotrophic Heterotrophic Bacteria (APHB) and Aerobic Mesophilic Heterotrophic Bacteria (AMHB), Enterobacteriaceae, coliforms at 45ºC (thermotolerant coliforms), coagulase-positive Staphylococci, presence of Vibrio parahaemolyticus and Salmonella sp., and determination of hydrogen potential (pH) and total volatile basic nitrogen (TVB-N). The bacterial isolates were evaluated for their resistance profile to the antimicrobial agents Penicillin, Ampicillin, Cefoxitin, Cefotaxime, Amikacin, Gentamicin, Tetracycline, and Trimethropim-sulfamethoxazole. The results showed that APHB, AMHB and coagulase-positive Staphylococci counts and the determination of pH and TVB-N were in accordance with national and international standards adopted as safe limits for consumption. In contrast, the Enterobacteriaceae and thermotolerant coliforms counts and presence of Salmonella sp. and V. parahaemolyticus were in disagreement with those standards, raising concern about the hygienic-sanitary quality of sashimi. The Staphylococcus aureus and V. parahaemolyticus isolates showed resistance to Penicillin, Ampicillin, Cefoxitin, Cefotaxime, Tetracycline, Gentamicin, and Amikacin, while the Salmonella sp. isolate showed no resistance to all the antimicrobial agents studied. The results showed that 48% of the samples were fit for consumption while 52% had unsatisfactory hygienic-sanitary quality for the parameters evaluated.
References
Arfatahery, N., Davoodabadi, A., & Abedimohtasab, T. (2016). Characterization of Toxin Genes and Antimicrobial Susceptibility of Staphylococcus aureus Isolates in Fishery Products in Iran. Scientific Reports. 6:34216. https://doi.org/10.1038/srep34216
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 45: 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
Beshiru, A., Igbisona, I. H., & Igbnosa, E. O. (2019). Prevalence of Antimicrobial Resistance and Virulence Gene Elements of Salmonella Serovars From Ready-to-eat (RTE) Shrimps. Frontiers in Microbiology. 10:1613. https://doi.org/10.3389/fmicb.2019.01613
Boss, R., Overesch, G., & Baumgartner, A. (2016). Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. Journal of Food Protection. 79:7:1240–1246. https://doi.org/10.4315/0362-028X.JFP-15-463
Brasil. Ministry of Agriculture. (1981). Official analytical methods for controlling animal products and their ingredients: II - Physical and chemical methods. National Secretariat for Agricultural Defense; National Animal Reference Laboratory, Brasilia DF.
Brasil. National Health Surveillance Agency. Resolution RDC 12 of January 2, 2001 (2001). which approves the Technical Regulation on Microbiological Standards for Food, Gazeta Oficial da Uniáo. Brasília – DF.
Brasil. Ministry of Agriculture, Livestock, and Supply. Decree 9,013, of March 29, 2017 on the Regulation of industrial and sanitary inspection of products of animal origin; Presidency of the Republic, Casa Civil, 2017; Brasília-DF.
Brasil. MS/SVS. (2019). Ministry of Health, Health Surveillance Secretariat; Foodborne Disease Outbreaks: Report 2018. http://portalarquivos2.saude.gov.br/images/pdf/2019/maio/17/Apresentacao-Surtos-DTA-Maio- 2019.pdf;
Cabello, F. C.; & Godfrey, H. P. (2016). Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environmental Microbiology. 18: 311-313. https://doi.org/10.1111 / 1462-2920.13247
Cabello, F. C., Godfrey, H. P, Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalization of antimicrobial resistance. Lancet Infectious Diseases. 16:7: 127-133. https://doi.org/10.1016 / S1473-3099 (16) 00100-6
CLSI. Clinical and Laboratory Standards Institute. (2010). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Approved Guideline 2th ed. 2010; Document M45-A2. Wayne, PA, EE.UU.
CLSI. Clinical and Laboratory Standards Institute. (2016). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. 2016; supplement M100-S. Wayne, PA, EE.UU.
CLSI. Clinical and Laboratory Standards Institute. (2018). Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. 2018; supplement M100. Wayne, PA, EE.UU.
CFS. Centre for Food Safety. (2019). Microbiological Guidelines for Food For ready-to-eat food in general and specific food itens, 2014; Hong Kong, CN. https://www.cfs.gov.hk/english/index.html; accessed in 10/09/2019.
European Communities. (1995). Commission decision fixing the total volatile basic nitrogen (TVB-N) values for certain categories of fishery products and specifying the analysis methods to be used 95/149 / EC. Official Journal of the European Communities. L97: 84-87.
FAO. Food and Agriculture Organization of the United Nations. Section 2 - Recommended International Code of Practice - General Principles of Food Hygiene. In: 17. FAO. Food and Agriculture Organization of the United Nations. Food Quality and Safety Systems - A Training Manual on Food Hygiene and the Hazard Analysis and Critical Control Point (HACCP) System.1998. http://www.fao.org/docrep/W8088E/w8088e04.htm accessed in 01/15/2020.
FDA. Food and Drug Administration. (2012). Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins: Vibrio parahaemolyticus, 2th ed. 2012; 2:26-29. https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM297627.pdf.
Gonçalves, A. A. (2011). Fish Technology: Science, Technology, Innovation and Legislation, 1th ed. São Paulo: Editora Atheneu, p.624.
Howgate, P. (2010). A critical review of total volatile bases and trimethylamine as índices of freshness of fish; Part.1: Determination, Electronics Journal of Environmental, Agricultural and Food Chemistry. 9:1 29-57.
ICMSF. International Commission on Microbiological Specifications for foods. (1986). 2. Sampling for microbiological analysis: principles and specific applications. 2th ed. London: Blackwell Scientific Publications. 1986; p.131.
ISO. International Organization for Standardization. (1999). Meat and meat products, measurement of pH, Reference method 2th ed. (ISO 2917). Geneva, SWI.
Kang, C. H., Shin, Y., Yu, H., Kim, S., & So, J. S. (2018). Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea. Marine Pollution Bulletin. 135: 69–74. https://doi.org/10.1016/j.marpolbul.2018.07.007
Kim, H. W., Hong, Y. J., Jo, J.I., Ha, S. D., Kim, S. H., Lee, H. J., & Rhee, M. S. (2016). Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Letters in Applied Microbiology. 64: 27-34. https://doi.org/10.1111/lam.12688
Lanzarin, M., Almeida Filho, E. S., Ritter, D. O., Mello, C. A., Corrêa, G. S. S., & Ignácio, C. M. S. (2011). Occurrence of Aeromonas sp. and psychrotrophic microorganisms and estimated shelf life of Pintado (Pseudoplatystoma coruscans) fillet kept refrigerated. Brazilian Archives of Veterinary Medicine and Animal Science. 63:6: 1541-1546. https://doi.org/10.1590/S0102-09352011000600035
Li, H., Stegger, M., Dalsgaard, A., & Leisner, J. J. (2019). Bacterial content and characterization of antibiotic resistant Staphylococcus aureus in Danish sushi products and association with food inspector rankings. International Journal of Food Microbiology. 305:108244. https://doi.org/10.1016/j.ijfoodmicro.2019.108244.
Liang, W. L., Pan, Y. L., Cheng, H. L., Li, T. C., Yu, P. H. F., & Chan, S. W. (2016). The microbiological quality of take-away raw salmon finger sushi sold in Hong Kong. Food Control. 69: 45-50. https://doi.org/10.1016/j.foodcont.2016.04.015.
Lopatek, M., Wieczorek, K., & Osek, J. (2018). Antimicrobial Resistance, Virulence Factors, and Genetic Profiles of Vibrio parahaemolyticus from Seafood. Applied and Environmental Microbiology. 84:16: 1-10. https://doi.org/10.1128/ AEM.00537-18.
Miguéis, S., Moura, A. T., Saraiva, C., & Esteves, A. (2016). Influence of season and type of restaurants on sashimi microbiota. The European Journal of Public Health. 26:5: 877–881. https://doi.org/10.1093/eurpub/ckw009
Miguéis, S., Santos, C., Saraiva, C., & Esteves, A. (2015). Evaluation of ready to eat sashimi in northern Portugal restaurants. Food Control. 47:32-36. https://doi.org/10.1016/j.foodcont.2014.06.025
Millanao, A. R., Barrientos-Schaffeld, C., Siegel-Tike, C. D., Ivanova, L., Godfrey, H. P., Dolz, H. J., Buschmann, A. H., & Cabello, F. C. (2018). Resistance to antimicrobials in Chile and the Una Salud paradigm: managing risks for human and animal public health resulting from the use of antimicrobials in salmon aquaculture and medicine. Chilean Journal of Infectology. 35:3: 299-303. https://doi.org/10.4067/s0716-10182018000300299.
Moura, A. T. ; Saraiva, C., Miguéis, S., Esteves, A. & Fontes, M. C. (2017). Antimicrobial Susceptibility of Coagulase-Positive and Coagulase-Negative Staphylococci in Ready-to-Eat Sashimi. Journal of Aquatic Food Product Technology. 26:1: 95-102. https://doi.org/10.1080/10498850.2015.1099069
Muscolino, D., Giarratana, F., Beninati, C., Tornambene, A., Panebianco, A., & Ziino, G. (2014). Hygienic-sanitary evaluation os sushi and sashimi sold in Messina ans Catania, Italy. Italian Journal of Food Safety. 3:1701: 134-136. https://doi.org/10.4081 / ijfs.2014.1701.
Nguyen, D. T., Kanki, H., Nguyen, D. P., Le, H. T., Ngo, P. T., Tran, D. N., Le, N. H., Dang, C. Y., Kawai, T., Kawahara, R., Yonogi, S., Hirai, Y., Jinnai, M., Yamasaki, S., Kumeda, Y., & Yamamoto, Y. (2016). Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. International Journal of Food Microbiology. 236:7: 115-12. https://doi.org/10.1016/j.ijfoodmicro.2016.07.017.
Nollet, I. M. L., & Toldrá, F. (2010). Handbook of seafood and seafoos products analysis. CRC Press – Taylor & Francis Group. Boca Raton, FL. p.910.
Obdait, M. M., & Salman, A. E. B. (2017). Antimicrobial Resistance Percentages of Salmonella and Shigella in Seafood Imported to Jordan: Higher Percentages and More Diverse Profiles in Shigella. Journal of Food Protection. 80:3: 414–419. https://doi.org/10.4315/0362-028X.JFP-16-322
Ogawa, M., & Maia, E.L. (1999). Fishing manual: science and technology of fish. 1ed. São Paulo: Varela. p. 430.
Onmaz, E. N., Abay, S., Karadal, F., Hizlisoy, H., Telli, N., & Al, S. (2015). Occurence and antimicrobial resistance of Staphylococcus aureus and Salmonella spp. in retail fish samples in Turkey. Marine Pollution Bulletin. 90: 242–246. https://doi.org/10.1016/j.marpolbul.2014.10.0460025-326X.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa cientifica. UFSM. https://repositorio.ufsm.br/bit stream/handle/1/1 582 4/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2017). Prevalence of Staphylococcus aureus and Salmonella enterica in ready-to-eat sushi and sashimi. Tropical Biomedicine. 34(1): 45–51. ISSN: 0127-5720. http://www.myjurnal.my/public/article-view.php?id=111609 accessed in 10/19/2019.
Puah, S. M., Chua, K. H., & Tan, J. A. M. A. (2016). Virulence Factors and Antibiotic Susceptibility of Staphylococcus aureus Isolates in Ready-to-Eat Foods: Detection of S. aureus Contamination and a High Prevalence of Virulence Genes. International Journal of Environmental Research and Public Health. 13:2: 199. https://doi.org/10.3390/ijerph13020199.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2019; Vienna, Austria. https://www.R-project.org/ accessed in 10/19/2019.
Ryser, E. T., & Schuman, J. D. (2015). Mesophilic Aerobic Plate Count in: SALFINGER Y. & TORTORELLO ML. (eds.), Compendium of Methods for the MicrobioLogical Examination of Foods, 5th ed. American Public Health Association. Washington, D.C., Chapter 8, p.95-101.
Ryu, A. R., Mok, J. S., Lee, D. E., Kwon, J. Y., & Park, K. (2019). Occurrence, virulence, and antimicrobial resistance of Vibrio parahaemolyticus isolated from bivalve shellfish farms along the southern coast of Korea. Environmental Science and Pollution Research 26:21034–21043. https://doi.org/10.1007/s11356-019-05426-1.
Sakazaki, R. (2003). Vibrio parahaemolyticus. Encyclopedia of Food Sciences and Nutrition (Second Edition); p. 5988. ISBN 9780080917917.
Silva, I. P., Carneiro, C. Z., Saraiva, M. A. F., Oliveira, T. A. S., Sousa, O. V., & Evangelista-Barreto, N. S. (2018). Antimicrobial resistance and potential virulence of Vibrio parahaemolyticus isolated from water and bivalve mollusks from Bahia, Brazil. Marine Pollution Bulletin. 131: 757–762. https://doi.org/10.1016/j.marpolbul.2018.05.007
Silva, N., Junqueira, V. C. A., Silveira, N. F. A., Taniwaki, M. H., Gomes, R. A. R., & Okazaki, M. M. (2017). Manual of methods of microbiological analysis of food and water; 5th ed., São Paulo: Blucher, 560p. ISBN: 978-85-212-1225-6.
Sperling, L., Alter, T., & Huehn, S. (2015). Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador. Journal of Food Protection. 78:11: 2089-2092. https://doi.org/10.4315/0362-028X.JFP-15-160
Venter, H., Henningsen, M. L., & Begg, S. L. (2017). Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines. Essays Biochem. 61: 1-10. https://doi.org/10.1042 / EBC20160053
Vu, T. T. T., Lu, M., Pichpol, D., Pham, N. H., Baumann, M., Alter, T., & Huehn, S. (2016). Prevalence and antimicrobial resistance of Vibrio spp. in retail shrimps in Vietnam: Prävalenz und antimikrobielle Resistenz von Vibrio spp. in Shrimps von Märkten in Vietnam. Berliner und Münchener tierärztliche Wochenschrift. 129:1: 48–51. ISSN: 0005-9366. https://doi.org/10.2376 / 0005-9366-129-48
Xu, X., Cheng, J., Wu, Q., Zhang, J., & Xie, T. (2016). Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BioMed Central Microbiology. 16:32. https://doi.org/10.1186/s12866-016-0650-6
WHO. World Health Organization. (2012). Animal Waste, Water Quality and Human Health. London: WHO/ IWA, 489p. ISBN: 9781780401232.
WHO. World Health Organization. (2019). Salmonella (non-thyphoidal). https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal); accessed in: 10/18/2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Iara Oliveira Arruda; Talitha Maria Porfírio; Edgar Nascimento; Demétrio de Abreu Sousa; Daniel Oster Ritter ; Marilu Lanzarin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.