Soil microbial activity in a consortium production system

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22366

Keywords:

Microbiology; Diversity; Agroecology; Fertilization.

Abstract

Microbial activities in the soil are important indicators of changes caused by agricultural practices, being responsible for physical, chemical and biological changes in organic residues, which affect soil fertility. The objective was to evaluate the microbial activity present in the soil in a management system intercropped with legumes, fruit trees and forest essence in comparison with an area of ​​native forest. The work was developed at the Federal Institute of Science and Technology of Roraima - Campus Novo Paraíso, in three areas, intercropping system of gliricidia + fruit trees (orange and banana), without gliricidia (orange and forest essentials) and native forest. Soil samples were collected at a depth of 0 cm - 10 cm and 10 cm-20 cm, placed in a thermal box and kept at 4 ºC. Soil Microbial Biomass Carbon (BMS-C), Soil Microbial Biomass Nitrogen (N-mic) and microorganism population (total, cellulite, ammonifiers and actinobacteria) were analyzed. The area of ​​the intercropping of gliricidia + fruit trees (orange and banana) had a greater population of microorganisms and an increase of 356% in microbial biomass carbon, proving to be an alternative system for the intercropping of plant species, favoring the supply of nutrients for the plants.

References

Arifuzzamanet, M. R. & Khatun and H. (2010). Rahman. Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. African Journal of Biotechnology Vol. 9(29), pp. 4615-4619, 19 July, AJB ISSN 1684–5315. https://doi.org/10.5897/AJB10.339

Bose, R. A. (1963). Modified Cellulosic Medium for the Isolation of Cellulolytic Fungi from Infected Materials and Soils. Nature 198, 505–506 https://doi.org/10.1038/198505a0

Cherubin, M.R.; Eitelwein, M.T.; Fabbris, C.; Weirich, S.W.; Silva, R.F.; Silva,V.R.; & Basso, C.J. (2015). Qualidade física, química e biológica de um Latossolo com diferentes manejos e fertilizantes. Revista Brasileira Ciência do Solo, 39: 615-625.

Clark, F. E. Agarplate method for total microbial count. In: Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L. & Clark, F. E. (1965). Methods of soil analysis. Madison: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.c48

Dionisio J. A. et al. (2016). Guia prático de biologia do solo. Curitiba:SBCS:NEPAR, 152 p. il. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/142645/1/Diana-Signor-guia-pratico-biologia-solo.pdf. ISBN 978-85-69146-00-1.

EMBRAPA (2013). Sistema Brasileiro de Classificação de Solos / Humberto Gonçalves dos Santos ... [et al.]. – 3 ed. rev. ampl. – Brasília, DF : Embrapa, 2013. 353 p.

Epelde, L. et al. (2014). Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, v. 75, p. 1-12.

Espindola, J. A. A.; Guerra, J.G.M.; Perin, A.; Teixeira, M.G.; Almeida, D.L.; Urquiaga, S.; & Busquet, R.N.B. (2006). Bananeiras consorciadas com leguminosas herbáceas perenes utilizadas como coberturas vivas. Pesquisa agropecuária brasileira. Brasília. 41 (3), 415 - 420.

Ferreira, D. F. (2014). Sisvar: a computer statistical analysis SYSTEM. Ciência Agrotecnologia - UFLA. 35(6). 1039 – 1042.

Jurburg, S.D & Salles, J.F. (2015). Functional redundancy and ecosystem function - The soil microbiota as a case study. In: LO YH et al. Biodiversity in ecosystems - linking structure and function. Rijeka: Intech. p. 29-49.

Kaba, J.S., Zerbe, S., Agnolucci, M. et al. (2019). Atmospheric nitrogen fixation by gliricidia trees (Gliricidia sepium (Jacq.) Kunth ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant Soil 435, 323–336. https://doi.org/10.1007/s11104-018-3897-x

Leal, M. L. A.; Chaves, J.S.; Silva, J.A.; Silva, L.S.; Soares, R.B.; Nascimento, J.P.S.; Matos, S. M.; Teixeira Júnior, D.L.; & Brito Neto, A.F. (2021). Efeito dos sistemas de manejo e do uso do solo na população de microrganismos do solo. Research, Society and Development, v. 10, n. 9, e21910917966. http://dx.doi.org/10.33448/rsd-v10i9.17966

Matos, S. M., Alves, R.N.; Chaves, J.S.; Soares, R.B.; Nascimento, J.P.S.; Silva, L.S.; Leal, M. L. A.; Marzano, I.M.; Moraes, G.S.C.; & Souza, F.G. (2021). Efeitos do uso de gliricídia e rocha fosfatada no crescimento e nos teores de N, P e K nas culturas do quiabo e pepino. Research, Society and Development, v. 10, n. 4, eXX, http://dx.doi.org/10.33448/rsd-v10i4.XXXXX

Moreira, F. M.S. & Siqueira, J. O. (2006). Microbiologia e Bioquímica do Solo. 2. ed. atual. e ampl. — Lavras: Editora UFLA, 729 p.

Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, v. 42, n. 9, p. 1363-1371.

Oliveira, L.G.; Batalha, M.O.; & Pettan, K.B. (2017). Comparative assessment of the food purchase program and the national school feeding program’s impact in Ubá, Minas Gerais, Brazil. Ciência Rural. Santa Maria, 47: 01- 06.

Parkin, T.B.; Doran, J.W. & Francop-Vizcaino, E. (1996). Field and laboratory tests of soil respiration. In: Doran, J.W. & Jones, A. (Eds) – Method for assessing soil quality. Madison, Soil Science Society of America, p. 231-245.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM

Santana, A C; Chaves, J.S; & Rodriguez, C.A. (2017). Biomassa microbiana em diferentes sistemas de manejo do solo no sul do estado de Roraima. Revista Brasileira de Ciências da Amazônia, p.1-67.

Sarathchandra, S.U. (1978). Nitrification activities and the changes in the populations of nitrifying bacteria in soil perfused at two different H-ion concentrations. Plant Soil 50, 99–111. https://doi.org/10.1007/BF02107160

Silva, C. F. et al. (2021). Soil attributes as indicators of the stabilization process of erosion in gullies at different formation stages in the southeast region of Brazil. Revista Ambiente & Água [online]. 2021, v. 16, n. 4. Epub 04 Aug ISSN 1980-993X. https://doi.org/10.4136/ambi-agua.2632.

Souto, P.C.; Bakke, I.A.; Souto, J.S. & Oliveira, V.M. (2009) – Cinética da respiração edáfica em dois ambientes distintos no semiárido da Paraíba, Brasil. Revista Caatinga, vol. 22, n. 3, p. 52-58.

Tate, K.R.; Ross, D.J.; & Feltham, C.W. (1988). A direct extraction method to estimate soil microbial C: Effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., 20:329-335.

Vance, E.D.; Brookes, P.C.; & Jenkinson, D.S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 19: 703-707.

Published

13/11/2021

How to Cite

SILVA, H. S. .; CHAVES, J. da S.; NASCIMENTO, J. P. S. do . .; MATOS, S. M. de .; BRITO NETO, A. F. de .; LEITE, J. L. .; PEREIRA, H. R. .; BRITO, W. A. de . Soil microbial activity in a consortium production system. Research, Society and Development, [S. l.], v. 10, n. 14, p. e534101422366, 2021. DOI: 10.33448/rsd-v10i14.22366. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22366. Acesso em: 26 nov. 2024.

Issue

Section

Agrarian and Biological Sciences