Application of surface response methodology in the evaluation of thermal degradation of Polyvinylpyrrolidone/Chitosan

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.22665

Keywords:

Chitosan; Polyvinylpyrrolidone; Degradation; Thermal analysis; Response surface methodology.

Abstract

Using biomaterials, he goes back to historical times and seeks to find a home for a better quality of life and an increase in life expectancy. Among the various materials applied as intuitively, the polymeric biomaterials stand out in the application of the treatment of holidays, especially due to their properties. A chitosan that stands out with its antimicrobial action, biodegradability and biodegradability and or polyvinylpyrrolidone (PVP) with its biocompatibility and its non-toxicity. However, in search of unique biomaterials with different responses, we raise the association of materials that we can promote changes of properties, such as thermals. During the exposition, this research investigates the thermal analysis of chitosan and PVP in its mixtures. For this, the polymers were characterized by thermogravimetric analysis (TGA) and differential exploratory calorimetry (DSC). Subsequently, it was simulated to degradation of the polymeric mixture, based on the results of the TGA of raw materials in a linear model and applied to the responsive surface methodology (MSR). From thermal analyzes by DSC, the transition temperatures of two polymers will be observed, and the TGA and its derivative are visualized in the presence of the density and degradation profile of raw materials, which corroborate with literature studies. Through the MSR, a degradation profile model was created at 350° C for mixing two polymers considering the linear model, where it was verified that, with mass concentration and proportion of polymers, we modify the degradation profile, using chitosan or higher factor influence.

References

Albertini, B., Cavallari, C., & Passerini, N. (2003). Evaluation of B-Lactose, PVP K12 and PVP K90 as Excipients to Prepare Piroxicam Granules Using two Wet Granulation Techniques. European Journal of Pharmaceutics and Biopharmaceutics, 56, 479–487. 10.1016/S0939-6411(03)00114-0

Archana, D., Singh, B. K., Dutta, J., & Dutta, P. K. (2015). Chitosan-PVP-nano Silver Oxide Wound Dressing: In Vitro and in Vivo Evaluation. International Journal of Biological Macromolecules, 73, 49–57. 10.1016/j.ijbiomac.2014.10.055

Augusto, F., & Leite, S. (2021). Curativos de prata no tratamento de feridas exsudativas - uma revisão sistemática. Revista Feridas, 09(46), 1682–1689.

Bernardo, M., Paschoalin, R., Santos, D., Bilatto, S., Farinas, C., Correa, D., Oliveira, O., & Mattoso, L. (2021). Processamento e Aplicação de Biomateriais Poliméricos: Avanços Recentes e Perspectivas. Química Nova, January. 10.21577/0100-4042.20170781

Bianco, G., Soldi, M. S., Pinheiro, E. A., Pires, A. T. N., Gehlen, M. H., & Soldi, V. (2003). Thermal stability of poly ( N -vinyl-2-pyrrolidone-co-methacrylic acid ) copolymers in inert atmosphere. Polymer Degradation and Stability, 80, 567–574. 10.1016/S0141-3910(03)00053-3

Biswal, S., Sahoo, J., & Murthy, P. N. (2009). Brief / Technical Note Physicochemical Properties of Solid Dispersions of Gliclazide in Polyvinylpyrrolidone K90. 10(2). 10.1208/s12249-009-9212-7

Carmignan, F., Matias, R., Carollo, C. A., Dourado, D. M., Fermiano, M. H., Silva, B. A. K., & Bastos, P. (2019). Eficácia da aplicação de Equisetum pyramidale Goldm. hidrogel na restauração tecidual em lesões cutâneas induzidas em ratos Wistar. Brazilian Journal of Biology, 80, 12–22.

de Campos, D. L. P., Solla, M. F., Sugiyama, L. T., dos Santos, N. B., Gonella, H. A., & da Silva Rodrigues, J. M. (2017). Estudo experimental comparativo entre curativo a base de sulfadiazina de prata e o biopolímero de poliuretano e quitosana em queimaduras de espessura parcial superficial. Revista Da Faculdade de Ciências Médicas de Sorocaba, 19(Supl.).

Denari, G. B., & Cavalheiro, É. T. G. (2012). Princípios e Aplicações de Análise Térmica (IQSC). São Carlos.

Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–a review. BioMedicine, 5(4), 1–5.

Ducheyne, P. (2015). Comprehensive biomaterials (Vol. 1). Elsevier.

Farina-Junior, J., Coltro, P., Oliveira, T., & Correa, F. (2017). Curativos de prata iônica como substitutos da sulfadiazina para feridas de queimaduras profundas: relato de caso. Rev Bras Queimaduras, 16(1), 1–5.

Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 12(5), 18–21. 10.3390/POLYM12051114

Ges Naranjo, A. A., Cobas, H. V., Hernández, L. G., Rey, L. P., Corrales, Y. A., Luz, I., Botelho, K., & Fontes, W. (2021). Nanogels as prospective biomaterial: Radio-induced synthesis, characterization, and biological assays. Revista Cubana de Investigaciones Biomedicas, 40(5).

Ionashiro, M., Caires, F. J., & Gomes, D. J. C. (2005). Princípios Básicos da Termogravimetria e Análise Térmica Diferencial/ Calorimetria Exploratória Diferencial (Giz). São Paulo.

Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. The Royal Society of Chemistry, 44, 17883–17905. 10.1039/c5dt02964c

Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60(September), 102046. 10.1016/j.jddst.2020.102046

Martínez-Camacho, a. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, a. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & Plascencia-Jatomea, M. (2010). Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305–315. 10.1016/j.carbpol.2010.04.069

Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., & Ostafe, V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, 20(23), 1–33. 10.3390/ijms20235889

Mishra, R., Varshney, R., Das, N., Sircar, D., & Roy, P. (2019). Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. European Polymer Journal, 119(July), 155–168. 10.1016/j.eurpolymj.2019.07.007

Morgado, P. I., Miguel, S. P., Correia, I. J., & Aguiar-Ricardo, A. (2017). Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydrate Polymers, 159, 136–145. 10.1016/j.carbpol.2016.12.029

Newman, A. (2012). Using Thermal Techniques for Amorphous Materials. Seventh Street Development Group (Ed.), Pharmaceutical Powder X-ray Diffraction Symposium. Fort Myers.

Oliveira, M. Z. F. da S., Fernandes, T. S. M., & Carvalho, T. V. (2021). Síntese e caracterização de beads de quitosana comercial reticulados com glutaraldeído. Revista Materia, 26(2). 10.1590/S1517-707620210002.1261

Queiroz, B. B. de, & Tomaz, A. F. (2020). Eficácia do Curativo de Quitosana na Cicatrização: Uma Revisão Integrativa. Revista Eletrônica de Ciências - TEMA, 21(32), 82. Retrieved from http://repositorio.unan.edu.ni/2986/1/5624.pdf

Reul, L. T. A., Carvalho, L. H., & Canedo, E. L. (2018). Características Reológicas e Térmicas de Compósitos Policaprolactona / Babaçu. 3(2017), 174–182.

Rinaudo, M., & Ã, M. R. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. 10.1016/j.progpolymsci.2006.06.001

Santos Filho, E. A. dos, Luna, C. B. B., Siqueira, D. D., Araújo, E. M., & Wellen, R. M. R. (2020). Efeito do recozimento nas propriedades mecânicas, térmicas e termomecânicas da PCL. Research, Society and Development, 9(12), e13191210764. 10.33448/rsd-v9i12.10764

Sebastião V. Canevarolo Junior. (2003). Técnicas de Caracterização de Polímeros (Artliber).

Sen, C. K. (2019). Human wounds and its burden: an updated compendium of estimates. Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New ….

Sizílio, R. H., Galvão, J. G., Trindade, G. G. G., Pina, L. T. S., Andrade, L. N., & Gonsalves, J. K. M. C. (2018). Chitosan / pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis. Carbohydrate Polymers, 190(February), 339–345. 10.1016/j.carbpol.2018.02.079

Verde, D. dos S. V., Mendes, M. I. de S., Souza, A. da S., Pinto, C. R., Nobre, L. V. C., Melo, J. E. dos S., & Ledo, C. A. da S. (2021). Ácido ascórbico e polivinilpirrolidona no cultivo in vitro de Dioscorea spp. Research, Society and Development, 10(9), e10510917812. 10.33448/rsd-v10i9.17812

Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204–226.

Published

21/11/2021

How to Cite

COSTA FILHO, E. A. .; PAIVA, M. M. .; SANTOS, B. G. B. dos .; SANTOS, K. O. .; SOUSA, W. J. B. de .; ASSIS JÚNIOR, P. C. de .; CARDOSO, M. J. B. . Application of surface response methodology in the evaluation of thermal degradation of Polyvinylpyrrolidone/Chitosan . Research, Society and Development, [S. l.], v. 10, n. 15, p. e119101522665, 2021. DOI: 10.33448/rsd-v10i15.22665. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22665. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings