Assessment of phosphorus solubilization potential by Aspergillus terreus

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23271

Keywords:

Phosphorus; Biosolubilization; Solubilization; Aspergillus terreus; Iron ore tailings.

Abstract

Biosolubilization is one of the most innovative and promising technologies used in soil recovery, fully applicable to mining tailings, despite the immense incapacity of mining companies to achieve full use of their minerals, due to methods considered fallible in the mining process. This study envisioned the possibility of applying the solubilization of phosphorus present in iron ore tailings by Aspergillus terreus. The analytical tests proposed in the study indicated a maximum solubilization of 87.77% of the phosphorus by A. terreus from the iron ore tailings, corresponding to a concentration of 286.38 mg L-1 of soluble phosphorus, occurring within a period of 168 hours of biosolubilization process, and thus, contributing to an average solubilization of 1.70 mg h-1 of phosphorus by the fungal biomass. In addition, the microphotographic images obtained by SEM and TEM revealed, through analysis, the morphological and structural aspects of the mycelium and the cellular composition of the fungus, demonstrating the efficient solubilization of phosphorus by A. terreus. The information revealed by this study demonstrates the efficient solubilization of the phosphorus component present in the iron ore waste by the fungus, resulting in an excellent technology, and suggestive application in mining, as an alternative to reduce production costs, favoring the sustainability of the iron ore system. mining, and thus, contributing to a better quality of iron ore and a probable use of soluble phosphorus, for example, in the production of phosphate fertilizers.

References

Bertolazi, A. A., da Silva Folli-Pereira, M., Caione G., Passamani, L. Z., Colodete, C. M., de Souza, S. B., Ramos, A. C., Rasool, N., Júnior, G. F. S., & Schoninger, E. L. (2018). Linking Plant Nutritional Status to Plant-AMF Interactions. Microorganisms for Sustainability, Chapter 16, 351-384. https://doi.org/ 10.1007/978-981-10-5514-0_16

Cai, X., Qian, G., Zhang, B., Chen, Q., & Hu, C. (2018). Selective Liberation of High-Phosphorous OOlitic Hematite Assisted by Microwave Processing and Acid Leaching. Minerals, (8): 1-13. https://doi.org/10.3390/min8060245

Cao, Y., Zhang, Y., & Sun, T. (2018). Dephosphorization Behavior of High-Phosphorus Oolitic Hematite-Solid Waste Containing Carbon Briquettes during the Process of Direct Reduction-Magnetic Separation. Metals, (8): 1-11. https://doi.org/10.3390/met8110897

Chime, T. O., Menkiti, M. C., & Onukwuli, O. D. (2011). Biodephosphorization of iron ore using Acidothiobacillus ferrooxidans. NY Sci J, (1): 1-6. https://doi.org/10.7537/3979ny0401

Delvasto, P., Valverde, A., Ballester, A., Munoz, J. A., González, F., Blazquez, M. L., Igual, J. M., & García-Balboa, C. (2008). Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore. Hydrometallurgy, (3): 124-129. https://doi.org/10.1016/j.hydromet.2008.02.007

Ghosh, R., Barman, S., Mukherjee, R., & Mandal, N. C. (2016). Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiol Res, (183): 80-91. https://doi.org/10.1016/j.micres.2015.11.011

Godin, A. M. (2013). Soil nutrient status and fungal community structure of high and low phosphatase microsites in a mixed Douglas-¬fir paper birch stand (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0165655

Guo, L., Gao, J., Zhong, Y., Gao, H., & Guo, Z. (2015). Phosphorus removal of high phosphorous oolitic iron ore with acid-leaching fuidized-reduction and melt-separation process. ISIJ International, (9): 1806-1815. https://doi.org/10.2355/isijinternational.ISIJINT-2015-135

He, C. C., Hu, C. Y., & Lo, S. L. (2018). Integrating chloride addition and ultrasonic processing with electrocoagulation to remove passivation layers and enhance phosphate removal. Sep Purif Technol, (201): 148-155. https://doi.org/10.1016/j.seppur.2018.03.011

IAL - Instituto Adolfo Lutz (2008). Normas Analíticas do Instituto Adolfo Lutz. v. 1: Métodos químicos e físicos para análise de alimentos, 4ª edição, 1ª edição digital, São Paulo: IMESP, p. 1020.

Jain, R., Saxena, J., & Sharma, V. (2017). The ability of two fungi to dissolve hardly solube phosphates in solution. Mycology, (2): 104-110. https://doi.org/10.1080/21501203.2017.1314389

Kim, B. J., Cho, K. H., Lee, S. G., Park, C. Y., Choi, N. C., & Lee, S. (2018). Effective Gold Recovery from Near-Surface Oxide Zone Using Reductive Microwave Roasting and Magnetic Separation. Metals, (8): 1-11. https://doi.org/10.3390/met8110957

Kornberg, A., Rao, N. N., & Ault-Riché, D. (1999). Inorganic Polyphosphate: A Molecule of Many Functions. Annual Review of Biochemistry, (23): 1-18. https://doi.org/10.1146/annurev.biochem.68.1.89

Li, X., Luo, L., Yang, J., & Li, B. (2015). Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl Biochem Biotechnol, (5): 2755-2768. https://doi.org/10.1007/s12010-014-1465-2

Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S., & Hu, S. (2016). A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep, (1): 1-8. https://doi.org/10.1038/srep25313

Liu, Z., Li, Y. C., Zhang, S., Fu, Y., & Fan, X. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appl Soil Ecol, (96): 217-224. https://doi.org/10.1016/j.apsoil.2015.08.003

Mendes, G. O., Zafra, D. L., Vassilev, N. B., Silva, I. R., Jr Ribeiro, J. I., & Costa, M. D. (2014). Biochar enhances Aspergillus Níger rock phosphate solubilization by increasing organic acid production and alleviating fluorid toxicity. Microb Biotechnol, (10): 3081-3085. https://doi.org/10.1128/AEM.00241-14

Nautyal, C. S. (1999). An efficient microbiological growth médium for screening phosphate solubilizing micro-organisms. FEMS Microbiol Lett, (1): 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Ofoegbu, S. U. (2019). Characterization studies on Agbaja iron ore: a high-phosphorus content ore. SN Appl Sci, (1): 1-11. https://doi.org/10.1007/s42452-019-0218-9

Paul, D., & Sinha, S. N. (2016). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential river Ganga, India. Ann of Agrar Sci, (1): 130-136. https://doi.org/10.1016/j.aasci.2016.10.001

Pereira, A. C., & Papini, R. M. (2015). Processes for phosphorus removal from iron ore – a review. REM: Rev Esc Minas, (3): 331-335. http://dx.doi.org/10.1590/0370-44672014680202

Rachappa, S., Prakash, Y., & Amit (2015). Iron ore recovery from low grade by using advance methods. Proc Earth Planet Sci, (11): 195-197. https://doi.org/10.1016/j.proeps.2015.06.024

Rath, S. S., Rao, D. S., Tripathy, A., & Biswal, S. K. (2018). Biomass briquette as an alternative reductant for low grade iron ore resources. Biomass and Bioenergy, (108): 447-454. https://doi.org/10.1016/j.biombioe.2017.10.045

Solanki, M., Kumbu, B. S., & Nehra, K. (2018). Molecular diversity of phosphate solubilizing bacteria isolated from the rhizosphere of chickpea, mustard and wheat. Ann Agrar Sci, (4): 458-563. https://doi.org/10.1016/j.aasci.2018.05.007

Tahir, M., Khalid, U., Ijaz, M., Shah, G. M., Naeem, M. A., Shahid, M., Mahmood, K., Ahmad, N., & Kareem, F. (2018). Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Braz J Microbiol, (1): 15-24. https://doi.org/10.1016/j.bjm.2017.11.005

Taylor, D. J. C., Page, D. C., & Geldenhuys, P. (1988). Iron and steel in South Africa. J. S. Afr. Inst. Min. Metall., (3): 73-95. https://hdl.handle.net/10520/AJA0038223X_1819

Tudu, K., Kumar, S., & Mandre, N. (2018). Enhanced recovery of low-grade iron ore by selective flocculation method. J Disper Sci Technol, (8): 1075-1079. https://doi.org/10.1080/01932691.2017.1382371

Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water Rice. J Biotechnol (91): 127-141. https://doi.org/10.1016/S0168-1656(01)00333-9

Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour Technol, (247): 190-199. https://doi.org/10.1016/j.biortech.2017.09.092

Xiang, X. Y., Xia, W. T., Yuan, X. L., Yin, J. G., & An, J. (2018). Removal of Phosphorus from High Phosphorus Iron Ores in Wushan Mountain by Crosscurrent Acid Leaching. Solid State Phenomena, (279): 222-229. https://doi.org/10.4028/www.scientific.net/SSP.279.222

Xiao, C., Wu, X., & Chi, R. (2015). Dephosphorization of high-phosphorus iron ore using different sources of Aspergillus niger strains. Appl Biochem Biotechnol, (176): 518-528. https://doi.org/10.1007/s12010-015-1592-4

Yang, B., Huang, P., Shaoxian, S., Luo, H., & Zhang, Y. (2018). Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions. Results in Physics, (9): 970-977. https://doi.org/10.1016/j.rinp.2018.03.049

Zhang, H., Zhang, Z., Luo, L., & Yu, H. (2019). Behavior of Fe and P during reduction magnetic roasting-separation of phosphorus-rich oolitic hematite. Energy Sources, Part A: Recovery, utilization, and Environmental Effects, (41): 47-64. https://doi.org/10.1080/15567036.2018.1496195

Zhang, L., Machiela, R., Das, P., Zhang, M., & Eisele, T. (2019). Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature. Hidrometallurgy, (184): 95-102. https://doi.org/10.1016/j.hydromet.2018.12.023

Zhang, Y., Xue, Q., Wang, G., & Wang, J. (2018). The Effect of Temperature and Additive on Transport and Transformation of P of High-Phosphorus Iron Ore During Carbothermic Reduction. In: Hwang JY. et al. (eds) 9th International Symposium on High-Temperature Metallurgical Processing. TMS 2018. The Minerals, Metals & Materials Series, 855-868. https://doi.org/10.1007/978-3-319-72138-5_82

Zhao, Y., Sun, T., Zhao, H., Li, X., & Wang, X. (2018). Effects of CaCO3 as Additive on Coal-based Reduction of High-phosphorus Oolitic Hematite Ore. ISIJ International (58): 1768–1774. https://doi.org/10.2355/isijinternational.ISIJINT-2018-186

Zhao, J., Chen, Z., Zuo, H., Wang, J., & Xue, Q. (2018). Research on Reaction Mechanism of Vacuum Carbon Thermal Reduction and Dephosphorization in High Phosphate Iron Ore. Metals, (12): 1-17. https://doi.org/10.3390/met8121003

Published

07/12/2021

How to Cite

FERREIRA, G. L. da R.; VIEIRA , J. D. G. . Assessment of phosphorus solubilization potential by Aspergillus terreus. Research, Society and Development, [S. l.], v. 10, n. 16, p. e73101623271, 2021. DOI: 10.33448/rsd-v10i16.23271. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23271. Acesso em: 25 dec. 2024.

Issue

Section

Agrarian and Biological Sciences