Occurrences and applications of microalgae consortium: a systematic review of the literature

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24421

Keywords:

Consortium; Microalgae-microalgae; Microalgae-bacteria; Biomass production; Wastewater treatment; Bioactives.

Abstract

This systematic review aimed to investigate the literature regarding the occurrence and applications of microalgae consortia, in order to search for articles in international journals indexed in the Scopus database. The Systematic Literature Review (SLR) was used to map variables in the literature, such as the most cited publications, evolution of publications, and most relevant journals. The search extracted 278 articles by June 2020. The publications were reduced to 224 articles that comprised the two types of consortium proposed for investigation: 92 articles from the Microalga-Microalga (MM) consortium and 132 articles from the Microalga-Bacteria (MB) consortium. Articles covering consortia in the treatment of effluents were also investigated, which constituted 116 publications in the sample. The survey results show that studies referring to consortium of microalgae have gained prominence in recent years. The performance of consortia in the treatment of effluents and the processing of microalgal biomass in the quantification of bioactives of interest was highlighted as a recurrent theme in the literature. Given the possible applications, the literature reports the use of biomass from the consortium of microalgae generated during the effluent treatment process for its potential in the production of biofuels. On the other hand, implementation of expansive cultivation systems and other alternatives for the application of biomass are still poorly addressed in the literature and are considered research gaps.

References

Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., & Iluz, D. (2021). Unconventional high-value products from microalgae: A review. Bioresource Technology, 329, 124895. https://doi.org/10.1016/J.BIORTECH.2021.124895

Bornmann, L. and Leydesdorff, L. (2013). The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000. Journal of informetrics, 7(2), pp.286-291.

Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344. https://doi.org/10.1016/J.JTICE.2018.05.039

Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. bin, Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179–189. https://doi.org/10.1016/J.BIORTECH.2014.11.080

Chapin Iii, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E. and Mack, M.C. (2000). Consequences of changing biodiversity. Nature, 405(6783), pp.234-242.

Chinnasamy S, Bhatnagar A, Claxton R, Das KC. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using De-Bashan, L.E. & Bashan, Y., (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology, 101(6), pp.1611-1627.

Dayana Priyadharshini, S., Suresh Babu, P., Manikandan, S., Subbaiya, R., Govarthanan, M., & Karmegam, N. (2021). Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environmental Pollution, 290, 117989. https://doi.org/10.1016/J.ENVPOL.2021.117989

Denyer, D., Tranfield D. Producing a Systematic Review. In: The Sage 49 Handbook of Organizational Research Methods. Thousand Oaks: Sage Publications Ltd., 2009. p. 671–689.

Fakhimi, N., Gonzalez-Ballester, D., Fernández, E., Galván, A., & Dubini, A. (2020). Algae-Bacteria Consortia as a Strategy to Enhance H2 Production. Cells, 9(6), 1353. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cells9061353

Fallahi, A., Rezvani, F., Asgharnejad, H., Khorshidi, E., Hajinajaf, N., & Higgins, B. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272, 129878. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129878

Fu P., Secundo F. (2016) Algae and their bacterial consortia for soil bioremediation, Chemical Engineering Transactions, 49, 427-432 DOI: 10.3303/CET1649072

Fu, Y., Chen, T., Chen, S. H. Y., Liu, B., Sun, P., Sun, H., & Chen, F. (2021). The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends in Food Science & Technology, 112, 188–200. https://doi.org/10.1016/J.TIFS.2021.03.050

Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresource Technology, 200, 279–286. https://doi.org/10.1016/J.BIORTECH.2015.10.023

Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415. https://doi.org/10.1016/J.ALGAL.2016.11.008

González-Gálvez, O. D., Nava Bravo, I., Cuevas-García, R., Velásquez-Orta, S. B., Harvey, A. P., Cedeño Caero, L., & Orta Ledesma, M. T. (2020). Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00716-y

Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2013). Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresource Technology, 135, 598–603. https://doi.org/10.1016/J.BIORTECH.2012.09.029

Hossain, N., & Mahlia, T. (2019) Progress in physicochemical parameters of microalgae Cultivation for biofuel production. Critical Reviews in Biotechnology, 39(6), 835–859..

Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54–67. https://doi.org/10.1016/J.BIOTECHADV.2017.09.009

Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., Manikandan, A., Kusuma, H. S., & Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews, 137, 110603. https://doi.org/10.1016/J.RSER.2020.110603

Ishika, T., Moheimani, N. R., & Bahri, P. A. (2017). Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 78, 356–368. https://doi.org/10.1016/J.RSER.2017.04.110

Juneja, A.; Ceballos, R.M. & Murthy, G.S. (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, v. 6, n. 9, p. 4607-4638.

Katiyar, R., Gurjar, B. R., Biswas, S., Pruthi, V., Kumar, N., & Kumar, P. (2017). Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, 72, 1083–1093. https://doi.org/10.1016/J.RSER.2016.10.028

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(TR/SE-0401), 28. http://doi.org/10.1.1.122.3308

Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137. https://doi.org/10.1016/J.BIORTECH.2017.06.054-1093. 2017.

Magdouli, S., Brar, S. K., & Blais, J. F. (2016). Co-culture for lipid production: Advances and challenges. Biomass and Bioenergy, 92, 20–30. https://doi.org/10.1016/J.BIOMBIOE.2016.06.003

Manzoor, Maleeha & Ma, Ruijuan & Shakir, Hafiz & Tabssum, Fouzia & Qazi, Javed. (2016). Microalgal-bacterial consortium: A cost-effective approach of wastewater treatment in Pakistan. Punjab university journal of zoology. 31. 307-320.

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010b). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/J.RSER.2009.07.020

Morais Junior, W. G., Gorgich, M., Corrêa, P. S., Martins, A. A., Mata, T. M., & Caetano, N. S. (2020). Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 528, 735562. https://doi.org/10.1016/J.AQUACULTURE.2020.735562

Moreno-Garcia, L., Adjallé, K., Barnabé, S., & Raghavan, G. S. V. (2017). Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renewable and Sustainable Energy Reviews, 76, 493–506. https://doi.org/10.1016/J.RSER.2017.03.024

Mujtaba, Ghulam, & Lee, Kisay. (2016). Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria. Applied Chemistry for Engineering, 27(1), 1–9. https://doi.org/10.14478/ACE.2016.1002

Nath, A., Tiwari, P. K., Rai, A. K., & Sundaram, S. (2019). Evaluation of carbon capture in competent microalgal consortium for enhanced biomass, lipid, and carbohydrate production. 3 Biotech, 9(11), 1–15. https://doi.org/10.1007/s13205-019-1910-6

Padmaperuma, G; Kapoore, R.V.; = Gilmour, D. J.; Vaidyanathan, S. (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing, Critical Reviews in Biotechnology, 38:5, 690-703, DOI: 10.1080/07388551.2017.1390728

Perera, Isiri & Subashchandrabose, Suresh & Kadiyala, Venkateswarlu & Naidu, Ravi & Mallavarapu, Megharaj. (2018). Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology. 102. 10.1007/s00253-018-9192-1.

Perera, I. A., Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., Naidu, R., & Megharaj, M. (2019). Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Critical Reviews in Biotechnology, 39(5), 709–731. https://doi.org/10.1080/07388551.2019.1597828

Pires, J. C.M.; Alvim-Ferraz, M. C.M; Martins, F.G. (2017). Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, v. 79, p. 248-254.

Ramanan, R., Kim, B.H., Cho, D.H., Oh, H.M. and Kim, H.S., 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), pp.14-29.

Rashid,N., Ryu, A.E., Jeong, K.J., Lee, B. , Chang, Y. Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production, Energy Conversion and Management, 196, pp. 640-648, 2019. https://doi.org/10.1016/j.enconman.2019.05.106.

Rossi S. , Sforza E. , Pastore M. , Bellucci M. , Casagli F. , F Marazzi. & Ficara E. .Photo-respirometry to shed light on microalgae-bacteria consortia—a review. Rev Environ Sci Biotechnol 19, 43–72 (2020). https://doi.org/10.1007/s11157-020-09524-2

Smith, T.P., Thomas, T.J., García-Carreras, B., Sal, S., Yvon-Durocher, G., Bell, T. & Pawar, S., (2019). Community-level respiration of prokaryotic microbes may rise with global warming. Nature communications, 10(1), pp.1-11.

Sorz, J., Glänzel, W., Ulrych, U., Gumpenberger C. & Gorraiz J. (2020). Research strengths identified by esteem and bibliometric indicators: a case study at the University of Vienna. Scientometrics 125, 1095–1116.

Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320–1333. https://doi.org/10.1016/J.JCLEPRO.2019.04.287

Vieira de Mendonça, H., Assemany, P., Abreu, M., Couto, E., Maciel, A. M., Duarte, R. L., Barbosa dos Santos, M. G., & Reis, A. (2021). Microalgae in a global world: New solutions for old problems? Renewable Energy, 165, 842–862. https://doi.org/10.1016/J.RENENE.2020.11.014

Wu, J. Y., Lay, C. H., Chiong, M. C., Chew, K. W., Chen, C. C., Wu, S. Y., Zhou, D., Kumar, G., & Show, P. L. (2020). Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations. Journal of Water Process Engineering, 38, 101609. https://doi.org/10.1016/J.JWPE.2020.101609

Zhang, B., Li, W., Guo, Y., Zhang, Z., Shi, W., Cui, F., Lens, P. N. L., & Tay, J. H. (2020). Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 118,109563. https://doi.org/10.1016/j.rser.2019.109563

Published

03/01/2022

How to Cite

COSTA, M. H. J. da; NONATO, N. da S. .; MORIOKA, S. N. .; NÓBREGA, M. M. .; SANTOS, S. F. de M. .; PEREIRA, D. A. . Occurrences and applications of microalgae consortium: a systematic review of the literature. Research, Society and Development, [S. l.], v. 11, n. 1, p. e11511124421, 2022. DOI: 10.33448/rsd-v11i1.24421. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24421. Acesso em: 22 dec. 2024.

Issue

Section

Review Article