Crambe grain yield affected by compaction degrees of an Oxisol

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26500

Keywords:

Soil density; Soil structure; Energy crops.

Abstract

Crambe is a new crop that produces oil used for biodiesel production. Soil compaction in a no-tillage (NT) system is one of the main challenges for sustainable grain production in soil clay. The objective of this study was to evaluate the effect of compaction degree on crambe grain yield over two years. The levels of artificial compaction were generated using a roller compactor (0, 1, 3, and 5 passes) under a NT system. The experimental design was a strip block, and soil density and crambe grain yield were evaluated. The passes of the roller increased the density from 0.98 to 1.24 Mg m−3 in the 0–0.1 m layer, and 1.03 to 1.15 Mg m−3 in the 0.1–0.2 m layer. As a result, the compaction degree increased from 53% to 66% in the 0–0.1 m layer and 54% to 61% in the 0.1–0.2 m layer. Five passes of the roller compactor reduced the crambe grain yield by 41% and 9% in the first and second years, respectively, compared to the NT system without additional compaction. The crambe grain yield was reduced when the compaction degree reached 53%; therefore, crambe is not suitable for compacted soils.

References

Ahmad, N., Hassan, F. U., & Belford, R. K. (2009). Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum): I. Compaction. Field Crops Research, 110(1), 54-60.

Andognini, J., Albuquerque, J. A., Warmling, M. I., Teles, J. S., & Silva, G. B. D. (2020). Soil compaction effect on black oat yield in Santa Catarina, Brazil. Revista Brasileira de Ciência do Solo, 44.

Arvidsson, J., Etana, A., & Rydberg, T. (2014). Crop yield in Swedish experiments with shallow tillage and no-tillage 1983–2012. European journal of agronomy, 52, 307-315.

Atkinson, B. S., Sparkes, D. L., & Mooney, S. J. (2009). The impact of soil structure on the establishment of winter wheat (Triticum aestivum). European Journal of Agronomy, 30(4), 243-257.

Bassegio, D., Sarto, M. V. M., Rosolem, C. A., & Sarto, J. R. W. (2018). Guar root and shoot growth as affected by soil compaction. Pesquisa Agropecuária Tropical, 48, 163-169.

Bengough, A. G., & Young, I. M. (1993). Root elongation of seedling peas through layered soil of different penetration resistances. Plant and soil, 149(1), 129-139.

Bergamin, A. C., Vitorino, A. C. T., Franchini, J. C., Souza, C. M. A. D., & Souza, F. R. D. (2010). Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo, 34(3), 681-691.

Betioli Júnior, E., Moreira, W. H., Tormena, C. A., Ferreira, C. J. B., Silva, Á. P. D., & Giarola, N. F. B. (2012). Intervalo hídrico ótimo e grau de compactação de um Latossolo Vermelho após 30 anos sob plantio direto. Revista Brasileira de Ciência do Solo, 36(3), 971-982.

Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164-200.

Bonini, A. K., Secco, D., Santos, R. F., Reinert, D. J., & Reichert, J. M. (2011). Atributos físico-hídricos e produtividade de trigo em um Latossolo sob estados de compactação. Ciência Rural, 41, 1543-1548.

Bouwman, L. A., & Arts, W. B. M. (2000). Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties. Applied Soil Ecology, 14(3), 213-222.

Carter, M. R. (1990). Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Canadian Journal of Soil Science, 70(3), 425-433.

Castro, M. B. S., Secco, D., de Marins, A. C., Bassegio, D., de Souza, S. N. M., & Junior, L. A. Z. (2021). Propriedades físicas do solo e produtividade de

grãos de milho cultivo após espécies de cobertura. Research, Society and Development, 10(16), e220101623786-e220101623786.

Cattanêo, A. J., Stangarlin, J. R., Bassegio, D., & Santos, R. F. (2016). Crambe affected by biological and chemical seed treatments. Bragantia, 75, 292-298.

Collares, G. L., Reinert, D. J., Reichert, J. M., & Kaiser, D. R. (2008). Compactação de um Latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo. Revista Brasileira de Ciência do Solo, 32(3), 933-942.

Embrapa (1997). Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo.

Embrapa (2013). Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de Solos: Rio de Janeiro.

Genro Junior, S. A., Reinert, D. J., Reichert, J. M., & Albuquerque, J. A. (2009). Atributos físicos de um Latossolo Vermelho e produtividade de culturas cultivadas em sucessão e rotação. Ciência Rural, 39(1), 65-73.

Håkansson, I. (1990). A method for characterizing the state of compactness of the plough layer. Soil and tillage research, 16(1-2), 105-120.

Håkansson, I., & Lipiec, J. (2000). A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53(2), 71-85.

Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and tillage research, 82(2), 121-145.

Hassan, F. U., Ahmad, M., Ahmad, N., & Abbasi, M. K. (2007). Effects of subsoil compaction on yield and yield attributes of wheat in the sub-humid region of Pakistan. Soil and Tillage Research, 96(1-2), 361-366.

Lindstron, M., & Voorhees, W. (1994). Response of temperate crops to soil compaction. Soane, BD & van Ouwerkerk, C. Soil compaction in crop production. London, Elsevier, 265-286.

Lipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116(1-2), 107-136.

Marins, A. C., Reichert, J. M., Secco, D., Rosa, H. A., & Veloso, G. (2018). Crambe grain yield and oil content affected by spatial variability in soil physical properties. Renewable and Sustainable Energy Reviews, 81, 464-472.

Mueller, L., Schindler, U., Mirschel, W., Shepherd, T. G., Ball, B. C., Helming, K., ... & Wiggering, H. (2011). Assessing the productivity function of soils. In Sustainable Agriculture Volume 2 (pp. 743-760). Springer, Dordrecht.

Nunes, M. R., Denardin, J. E., Pauletto, E. A., Faganello, A., & Pinto, L. F. S. (2015). Mitigation of clayey soil compaction managed under no-tillage. Soil and Tillage Research, 148, 119-126.

Peixoto, D. S., Silva, B. M., de Oliveira, G. C., Moreira, S. G., da Silva, F., & Curi, N. (2019). A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, 194, 104307.

Queiroz-Voltan, R. B., Nogueira, S. D. S. S., & Miranda, M. A. C. D. (2000). Aspectos da estrutura da raiz e do desenvolvimento de plantas de soja em solos compactados. Pesquisa Agropecuária Brasileira, 35(5), 929-938.

Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., & Håkansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102(2), 242-254.

Sadras, V. O., O’Leary, G. J., & Roget, D. K. (2005). Crop responses to compacted soil: capture and efficiency in the use of water and radiation. Field Crops Research, 91(2-3), 131-148.

Santos, G. A. D., Dias Junior, M. D. S., Guimarães, P. T. G., & Furtini Neto, A. E. (2005). Diferentes graus de compactação e fornecimento de fósforo influenciando no crescimento de plantas de milho (Zea mays L.) cultivadas em solos distintos. Ciência e Agrotecnologia, 29, 740-752.

Secco, D., Reinert, D. J., Reichert, J. M., & Silva, V. R. D. (2009). Atributos físicos e rendimento de grãos de trigo, soja e milho em dois Latossolos compactados e escarificados. Ciência Rural, 39(1), 58-64.

Silva, F. R. D., Albuquerque, J. A., & Costa, A. D. (2014). Crescimento inicial da cultura da soja em Latossolo Bruno com diferentes graus de compactação. Revista Brasileira de Ciência do Solo, 38, 1731-1739.

Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66-87.

Suzuki, L. E. A. S., Reichert, J. M., Reinert, D. J., & Lima, C. L. R. D. (2007). Grau de compactação, propriedades físicas e rendimento de culturas em Latossolo e Argissolo. Pesquisa Agropecuária Brasileira, 42, 1159-1167.

Toliver, D. K., Larson, J. A., Roberts, R. K., English, B. C., De La Torre Ugarte, D. G., & West, T. O. (2012). Effects of no‐till on yields as influenced by crop and environmental factors. Agronomy journal, 104(2), 530-541.

Tokura, L. K., Secco, D., Júnior, L. A. Z., Siqueira, J. A. C., Alovisi, A. M. T., Barison, A., & Zin, Z. (2021). Use of cover crops in Oxisol and its effects on

yield and soybean oil content. Research, Society and Development, 10(12), e353101220514-e353101220514.

Downloads

Published

15/02/2022

How to Cite

MARINS, A. C. de .; REICHERT , J. M. .; SECCO, D.; BASSEGIO, D.; NAVA , D. T. . Crambe grain yield affected by compaction degrees of an Oxisol. Research, Society and Development, [S. l.], v. 11, n. 3, p. e12111326500, 2022. DOI: 10.33448/rsd-v11i3.26500. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26500. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences