Techno-economic evaluation of biodiesel production using by-product as raw material and hydrotalcite-hydroxyapatite as catalyst

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26977

Keywords:

Biodiesel; Capital investment costs; Economic evaluation; Heterogeneous catalysis; Transesterification.

Abstract

Biodiesel is one of the main sources of renewable energy that can be obtained from oils and fats by transesterification. However, biodiesel produced from vegetable oils as a raw material is expensive. Thus, an alternative and inexpensive raw material such as vegetable oil deodorizing distillate (VODD) can be used as a raw material for the production of biodiesel. In this study, technical-economic analyzes were carried out in the biodiesel production process using VODD as raw material and hydrotalcite-hydroxyapatite as heterogeneous catalyst. Four different scenarios were considered for the economic technical evaluation of the biodiesel production process: heterogeneous catalysis, homogeneous catalysis, reduced ethanol flow in the process input stream, and different proportions of the biodiesel:diesel mixture. Biodiesel production presented a positive internal rate of return (IRR), and in comparison, with the minimum attractiveness rate (MAR), it was economically viable based on the sales prices of the revenues practiced. In the sensitivity analyses, it was observed that the catalyst acquisition price was the most critical factor in the economic analysis of the simulated plant. Using different catalysts, a comparative study showed that the heterogeneous catalyst makes the process less expensive with the purification steps. Thus, it can be confirmed that the results obtained from this study can open paths for new developments in the biodiesel process in relation to the use of residual raw material and new materials to be used as catalysts.

References

Aboelazayem, O., Gadalla, M., & Saha, B. (2018). Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy, 161, 299-307.

Almeida, L. A., Bôas, R. N. V., & Mendes, M. F. (2021). Process simulation of biodiesel production from vegetable oil deodorization distillate using hydrotalcite-hydroxyapatite as catalyst. Research, Society and Development, 10(6), e15210615452.

Ambat, I., Srivastava, V., & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Reviews, 90, 356-369.

ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2021). Biocombustíveis: Biodiesel. <http://www.anp.gov.br>.

Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Fattah, I. R., Imtenan, S., Shahir, S. A., & Mobarak, H. M. (2014). Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Conversion and Management, 80, 202-228.

Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Fayaz, H. (2013). Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211-245.

BIOMERCADO. (2021). Centro de Referência da Cadeia de Produção de Biocombustíveis Para Agricultura Familiar. http://www.biomercado.com.br.

Brasil, H., Pereira, P., Corrêa, J., Nascimento, L., Rumjanek, V., Almeida, V., & Rodrigues, E. (2017). Preparation of hydrotalcite–hydroxyapatite material and its catalytic activity for transesterification of soybean oil. Catalysis Letters, 147(2), 391-399.

Cao, Y., Doustgani, A., Salehi, A., Nemati, M., Ghasemi, A., & Koohshekan, O. (2020). The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran. Energy, 213, 118760.

CEDAE. (2021). <https://www.cedae.com.br>.

Coral, N., Brasil, H., Rodrigues, E., da Costa, C. E., & Rumjanek, V. (2019). Microwave-modified hydrotalcites for the transesterification of soybean oil. Sustainable Chemistry and Pharmacy, 11, 49-53.

Cruz, R. P., Ferreira, F. B., & Rodrigues, F. D. Á. (2017). Simulação e análise econômica da produção de biodiesel a partir de óleo de macaúba. The Journal of Engineering and Exact Sciences, 3(3), 533-560.

Dabdoub, M. J., & Bronzel, J. L. (2009). Biodiesel: visão crítica do status atual e perspectivas na academia e na indústria. Quimica Nova, 32(3), 776–792.

De Lima, A. L., Ronconi, C. M., & Mota, C. J. (2016). Heterogeneous basic catalysts for biodiesel production. Catalysis Science & Technology, 6(9), 2877-2891.

Essamlali, Y., Amadine, O., Larzek, M., Len, C., & Zahouily, M. (2017). Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, 149, 355-367.

Haas, M. J., Mcaloon, A. J., Yee, W. C., & Foglia, T. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97, 671–678.

Haihang Industry Co., Ltda. (2021). < https://haihangchem.com>.

Hexis Científica. (2021). <https://www.hexis.com.br>.

Guarieiro, L. L. N., Pinto, A. C., Aguiar, P. F., & Ribeiro, N. M. (2008). Determination of biodiesel percentage in biodiesel:diesel mixtures using mid-infrared. Química Nova, 31(2), 421-426.

Karmee, S. K., Patria, R. D., & Lin, C. S. K. (2015). Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil - A Case Study of Hong Kong. International Journal of Molecular Sciences, 16, 4362-4371.

Light Energia. (2021). <https://www.light.com.br>.

Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G. (2005). Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44(14), 5353-5363.

Lugovskoy, S., Weiss, D., Tsadok, U., & Lugovskoy, A. (2016). Morphology and antimicrobial properties of hydroxyapatite-titanium oxide layers on the surface of Ti-6Al-4V alloy. Surface & Coatings Technology, 301, 80-84.

Mansir, N., Taufiq-Yap, Y. H., Rashid, U., & Lokman, I. M. (2017). Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management, 141, 171-182.

Mendes, M. F., Pessoa, F. L. P., & Uller, A. M. C. (2002). An economic evaluation based on an experimental study of the vitamin E concentration present in deodorizer distillate of soybean oil using supercritical CO2. The Journal of Supercritical Fluids, 23, 257-265.

Mishra, V.K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273-289.

Navajas, A., Campo, I., Moral, A., Echave, J., Sanz, O., Montes, M., Odriozola, J.A., Arzamendi, G., & Gandía, L.M. (2018). Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 211, 173–181.

Nowicki, J., Lach, J., Organek, M., & Sabura, E. (2016). Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Applied Catalysis A-General, 524, 17–24.

Perry, R.H., Green, D., & Perry, Y. (1999). Chemical Engineers. Handbook, (6a ed.), McGraw-Hill.

Peters, M., Timmerhaus, K., & West, R. (2003). Plant Design and Economics for Chemical Engineers, (3a ed.), McGraw-Hill Europe.

Pinto, B. F., Garcia, M. A. S., Costa, J. C. S., De Moura, C. V. R., De Abreu, W. C., & De Moura, E. M. (2019). Effect of calcination temperature on the application of molybdenum trioxide acid catalyst: screening of substrates for biodiesel production. Fuel, 239, 290-296.

Ramos, L. P., Kothe, V., César-Oliveira, M. A. F., Muniz-Wypych, A. S., Nakagaki, S., Krieger, N., Wypych, F., & Cordeiro, C. S. (2017). Biodiesel: Raw Materials, Production Technologies and Fuel Properties. Revista Virtual de Química, 9(1), 317-369.

Receita Federal. 2021. <https://www.gov.br/receitafederal>.

Rodrigues, E., Brasil, H., Barros, T., Pereira, C., Dos Reis, M. A. L., & Almeida, O. (2018). Synthesis and characterization of hydrotalcite-hydroxyapatite material doped with carbon nanotubes and its application in catalysis of transesterification reaction. Cerâmica, 64, 166-175.

Rincón, L. E. ; Jaramillo, J. J. ; & Cardona, C. A. (2014). Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation. Renewable Energy, 69, 479e487.

Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 85, 945e952.

SENGERJ. 2021. Sindicatos dos Engenheiros do Estado do Rio de Janeiro. < http://www.sengerj.org.br/>.

SINDQUIMBRU. 2021. Sindicatos dos Trabalhadores da Industria Química e Farmacêutica. .

Singh, D., Sharma, D., Soni, S.L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553.

Su, F., & Guo, Y. (2014). Advancements in solid acid catalysts for biodiesel production. Green Chemistry, 16(6), 2934-2957.

Tran, H. L., Ryu, Y. J., Seong, D. H., Lim, S. M., & Lee, C. G. (2013). An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnology and Bioprocess Engineering, 18(2), 242-247.

Vilas-Bôas, R. N., Da Silva, L. L., Fernandes, L. D., Augusto, B. L., & Mendes, M. F. (2020). Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material. Catalysis Letters, 150, 3642-3652.

Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 29-32.

West, A. H., Posarac, D., & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS. Plant. Bioresource Technology, 99(14), 6587-6601.

Xie, W., Han, Y., & Tai, S. (2017). Biodiesel production using biguanide-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles. Fuel, 210, 83-90.

Yin, X., Duan, X., You, Q., Dai, C., Tan, Z., & Zhu, X. (2016). Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Conversion and Management, 112, 199-207.

Zhang, Y., Dube, M., McLean, D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process Design and Technological Assessment. Bioresource Technology, 89(1), 1-16.

Zhang, Y., Dubé, M. A., Lean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 90, 229-240.

Downloads

Published

09/03/2022

How to Cite

VILAS BÔAS, R.; ALMEIDA, L. de A. de .; MENDES, M. F. Techno-economic evaluation of biodiesel production using by-product as raw material and hydrotalcite-hydroxyapatite as catalyst. Research, Society and Development, [S. l.], v. 11, n. 4, p. e0511426977, 2022. DOI: 10.33448/rsd-v11i4.26977. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26977. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings