Acid corrosion of gray cast iron and steel for the hydrogen production

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27054

Keywords:

Corrosion speed; Gravimetric method; Hydrochloric acid; Sulfuric acid.

Abstract

Metal alloys are the most used products in day-to-day tasks, and thousands of tons are discarded into the environment daily. By studying metal corrosion processes, it is possible to propose applications for unused metallic materials, using oxidation in an acid medium, and generating hydrogen. With this, the objective of this work is to evaluate the acid corrosion of metals, reused, for the production of hydrogen. The methodology used was corrosion carried out with steel and gray cast iron, from automotive scrap, varying and combining the metallic material, the types of acids (Sulfuric and Hydrochloric) and the reaction time, building the curve of material corrosion. To quantify Fe levels, flame atomic absorption spectrometry was used. The results showed the influence of acids and metals, with different properties and chemical compositions, on the corrosion rate and consequently on the loss of material. Based on the literature, the possible factors that are significant in the reaction that caused unexpected behaviors to occur in the results, such as the greater loss of mass of the metal when immersed in acid with lower molarity, were justified. As final considerations, it was found that it is possible to proceed with research aimed at the production of hydrogen from the corrosion of residual metals, in order to minimize environmental problems, generating a new source of energy.

References

Coronel-García, M. A., Salazar-Barrera, J. G., Malpica-Maldonado, J. J., Martínez-Salazar, A. L., & Melo-Banda, J. A. (2020). Hydrogen production by aluminum corrosion in aqueous hydrochloric acid solution promoted by sodium molybdate dihydrate. International Journal of Hydrogen Energy, 45(26), 13693–13701. https://doi.org/10.1016/j.ijhydene.2020.01.122

Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173

Dincer, I., & Acar, C. (2014). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

Fernandes, D. M., Squissato, A. L., Lima, A. F., Richter, E. M., & Munoz, R. A. A. (2019). Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions. Renewable Energy, 139, 1263–1271. https://doi.org/10.1016/j.renene.2019.03.034

Gentil, V. (2012). Corrosão. Rio de Janeiro: LTC, 6 ª ed.

Jin, Z.; Xiong, C.; Zhao, T.; Du, Y.; Zhang, X.; Li, N.; Yu, Y. & Wang, P. (2022) Passivation and depassivation properties of Cr–Mo alloyed corrosion-resistant steel in simulated concrete pore solution. Cement and Concrete Composites, 126, 104375, ISSN 0958-9465, https://doi.org/10.1016/j.cemconcomp.2021.104375

Kochanek, E. (2021). The Energy Transition in the Visegrad Group Countries, Energies, 14, 2212. https://doi.org/10.3390/en14082212

Kong, L.; Li, L.; Liu, C.; Ma, P.; Bian, Y. & Ma, T. (2021). Techno-economic analysis of hydrogen energy for renewable energy power smoothing. International Journal of Hydrogen Energy, 46, 2847-2861.

Kuo, P. C., Illathukandy, B., Wu, W., & Chang, J. S. (2021). Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass. Energy, 223, 120025. https://doi.org/10.1016/j.energy.2021.120025

Labiapari, W. S., Ardila, M. A. N., Binder, C., Costa, H. L., & de Mello, J. D. B. (2019). Mechanical effects on the corrosion resistance of ferritic stainless steels during microabrasion-corrosion. Wear, 426–427, 1474–1481. https://doi.org/10.1016/j.wear.2018.12.057

Liang, J., Gao, L. J., Miao, N. N., Chai, Y. J., Wang, N., & Song, X. Q. (2016). Hydrogen generation by reaction of Al–M (M = Fe,Co,Ni) with water. Energy, 113, 282–287. https://doi.org/10.1016/j.energy.2016.07.013

Lu, Y., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z., & Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability (Switzerland), 12(12), 1–30. https://doi.org/10.3390/su12125078.

Maeda, T; Teixiera, L.; Caixeta, L.; Antonellli, R.; Pinto, C.;Dantas, S.; Silva, P.;Granato, A.;Fernandes, D.; Malpass, G. (2021). Feasibility of H2 production by acid corrosion using H2SiF6 and waste Fe sources. Química Nova, 1–10. https://doi.org/http://dx.doi.org/10.21577/0100-4042.20170778.

Oliveira, A. R. (2012). Corrosão e Tratamento de Superfície. Belém: Escola Técnica Aberta do Brasil IFPA, 104p. Trabalho de Conclusão de Curso (Especialização em Corrosão).

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 5 abril 2020.

Reuß, M., Dimos, P., Aline, L., Grube, T., Robinius, M., & Stolten, D. (2021). Hydrogen Road Transport Analysis in the Energy System : A Case Study for Germany through 2050, Energies, 14, 3166. https://doi.org/ 10.3390/en14113166

Sato, N. (1990). An overview on the passivity of metals. Corrosion Science, v. 31, p. 1-19, ISSN 0010-938X, https://doi.org/10.1016/0010-938X(90)90086-K.

Serbino, E.M. (2005). Um estudo dos mecanismos de desgaste em disco de freio automotivo ventilado de ferro fundido cinzento perlítico com grafita lamelar. Escola Politécnica da Universidade de São Paulo, USP, 123p. Dissertação (Mestrado em Engenharia), São Paulo.

Kumar S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002

Xu, X., Liu, S., Smith, K., Cui, Y., & Wang, Z. (2020). An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. In Journal of Cleaner Production (Vol. 276). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124079

Published

13/03/2022

How to Cite

FERREIRA, P. O. B.; MAEDA, T. C.; LIMA, A. de F.; MALPASS , G. R. P. .; DANTAS, S. C. Acid corrosion of gray cast iron and steel for the hydrogen production. Research, Society and Development, [S. l.], v. 11, n. 4, p. e14511427054, 2022. DOI: 10.33448/rsd-v11i4.27054. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27054. Acesso em: 29 dec. 2024.

Issue

Section

Exact and Earth Sciences