Overexpression of Head date 1 gene (Hd1): an adaptation of antarctic hairgrass to guano input from Macronectes giganteus colonies of Antarctica
DOI:
https://doi.org/10.33448/rsd-v11i4.27208Keywords:
Ammonium; Abiotic stress; Guano; Seabirds; Giant Petrel.Abstract
The Antarctic biodiversity, beyond the species composition, also comprises interactions between fauna and flora. M. giganteus, is one of the species that occupy the antarctic ice-free areas for reproduction. The moss Sanionia uncinata (Hedw.) Loeske and Deschampsia antarctica Desv. gress, common in Antarctica, with other species make up vast green formations and is associated with breeding areas of seabirds. These sites are large deposits of guano, because a large amount of birds those gather in colonies. Due to this large supply of guano, the soil becomes a deposit of minerals, mainly of nitrogen available in the form of ammonium and nitrate. The problem is that not all plant species tolerate high quantities of these substances so different plant species show trends in the mechanisms of tolerance to stress by ammonium, which have been proven at the molecular level. The aim of this study was to investigate the influence of breeding colonies of seabirds on plant populations in the South Shetland Islands, Antarctica, from a molecular perspective. From the analysis of the collected samples, using the RNA-Seq and qRT-PCR approach was possible to identify a single gene differential and significantly expressed in D. antarctica. The LOC_Os06g16380 gene among the sampled treatments (control, 1m and 10m), showed higher expression coming 1m near breeding areas of M. giganteus. Our results suggest that Hd1 is associated with the plants stress related to guano input since that soil analysis demonstrated a higher concentration of mineral nitrogen available near of breeding areas of seabirds.
References
Alberdi, M., Bravo, L. A., Gutiérrez, A., Gidekel, M., & Corcuera, L. J. (2002). Ecophysiology of Antarctic vascular plants. Physiologia Plantarum, 115(4), 479-486.
Barcikowski, A. D. A. M., Czaplewska, J., Giełwanowska, I., Loro, P. A. W. E. L., Smykla, J. E. R. Z. Y., & Zarzycki, K. A. Z. I. M. I. E. R. Z. (2001). Deschampsia antarctica (Poaceae)–the only native grass from Antarctica. Studies on grasses in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences, 367-377.
Blackall, T. D., Wilson, L. J., Theobald, M. R., Milford, C., Nemitz, E., Bull, J., ... & Sutton, M. A. (2007). Ammonia emissions from seabird colonies. Geophysical Research Letters, 34(10).
Bloom, A. J., Sukrapanna, S. S., & Warner, R. L. (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology, 99(4), 1294-1301.
Bloom, A. J., Jackson, L. E., & Smart, D. R. (1993). Root growth as a function of ammonium and nitrate in the root zone. Plant, Cell & Environment, 16(2), 199-206.
Bredemeier, C., & Mundstock, C. M. (2000). Regulation of nitrogen absortion and assimilation in plants. Ciência Rural, 30(2), 365-372.
Caldana, C., Scheible, W. R., Mueller-Roeber, B., & Ruzicic, S. (2007). A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods, 3(1), 1-9.
Copello, S., Quintana, F., & Pérez, F. (2008). Diet of the southern giant petrel in Patagonia: fishery-related items and natural prey. Endangered Species Research, 6(1), 15-23.
Edwards, J. A., & Smith, R. I. (1988). Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. British Antarctic Survey Bulletin, 81, 43-63.
Fangmeier, A., Hadwiger-Fangmeier, A., Van der Eerden, L., & Jäger, H. J. (1994). Effects of atmospheric ammonia on vegetation—a review. Environmental pollution, 86(1), 43-82.
Gimingham, C. H., & Smith, R. I. (1971). Growth form and water relations of mosses in the maritime Antarctic. British Antarctic Survey Bulletin, 25, 1-21.
Goff, L., Trapnell, C., & cummeRbund, K. D. (2012). Analysis, exploration, manipulation, and visualization of cufflinks high-throughput sequencing data. R package version, 2(1).
Hebel, I., Galleguillos, C., Jaña, R., & Dacasa-Rüdinger, M. D. (2012). Early knowledge of Antarctica’s vegetation: Expanding past and current evidence. Revista Chilena de Historia Natural, 85(4), 409-418.
Hebert, C. E., Weseloh, D. V., Gauthier, L. T., Arts, M. T., & Letcher, R. J. (2009). Biochemical tracers reveal intra-specific differences in the food webs utilized by individual seabirds. Oecologia, 160(1), 15-23.
Jain, M., Nijhawan, A., Tyagi, A. K., & Khurana, J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and biophysical research communications, 345(2), 646-651.
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., & Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and cell physiology, 43(10), 1096-1105.
Lee, H., Lee, Y. K., Yim, J. H., Lee, H. K., Kim, I. C., & Cho, H. H. (2008). Expressed sequence tag analysis of Antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica.
Lee, J., Noh, E. K., Choi, H. S., Shin, S. C., Park, H., & Lee, H. (2013). Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta, 237(3), 823-836.
Lud, D., Moerdijk, T. C. W., Van de Poll, W. H., Buma, A. G. J., & Huiskes, A. H. L. (2002). DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV‐B radiation. Plant, Cell & Environment, 25(12), 1579-1589.
Mendonça, E., La Scala, N., Panosso, A. R., Simas, F. N., & Schaefer, C. E. (2011). Spatial variability models of CO2 emissions from soils colonized by grass (Deschampsia antarctica) and moss (Sanionia uncinata) in Admiralty Bay, King George Island. Antarctic Science, 23(1), 27-33.
Park, J. S., Ahn, I. Y., & Lee, E. J. (2012). Influence of soil properties on the distribution of Deschampsia antarctica on King George Island, Maritime Antarctica. Polar biology, 35(11), 1703-1711.
Park, J. H., Day, T. A., Strauss, S., & Ruhland, C. T. (2007). Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biology, 30(2), 199-207.
Park, S. J., Kim, S. L., Lee, S., Je, B. I., Piao, H. L., Park, S. H., ... & Han, C. D. (2008). Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant Journal, 56(6), 1018-1029.
Parnikoza, I., Kozeretska, I., & Kunakh, V. (2011). Vascular plants of the Maritime Antarctic: origin and adaptation. American Journal of Plant Sciences, 2(03), 381.
Petry, M. V., Petersen, E. S., Scherer, J. D. F. M., Krüger, L., & Scherer, A. L. (2010). Notas sobre a ocorrência e dieta de Macronectes giganteus (Procellariiformes: Procellariidae) no Rio Grande do Sul, Brasil. Revista Brasileira de Ornitologia, 18(3), 237-239.
Petry, M. V., da Silva Fonseca, V. S., Krüger-Garcia, L., da Cruz Piuco, R., & Brummelhaus, J. (2008). Shearwater diet during migration along the coast of Rio Grande do Sul, Brazil. Marine Biology, 154(4), 613-621.
Raven, J. A., & Edwards, D. (2001). Roots: evolutionary origins and biogeochemical significance. Journal of experimental botany, 52(suppl_1), 381-401.
Riddick, S. N., Dragosits, U., Blackall, T. D., Daunt, F., Wanless, S., & Sutton, M. A. (2012). The global distribution of ammonia emissions from seabird colonies. Atmospheric Environment, 55, 319-327.
Dos Santos, I. R., Silva-Filho, E. V., Schaefer, C., Sella, S. M., Silva, C. A., Gomes, V., ... & Van Ngan, P. (2006). Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution, 140(2), 304-311.
Smykla, J., Wołek, J., & Barcikowski, A. (2007). Zonation of vegetation related to penguin rookeries on King George Island, Maritime Antarctic. Arctic, Antarctic, and Alpine Research, 39(1), 143-151.
Schmitz, D., Putzke, J., de Albuquerque, M. P., Schünemann, A. L., Vieira, F. C. B., Victoria, F. D. C., & Pereira, A. B. (2018). Description of plant communities on Half Moon Island, Antarctica. Polar Research, 37(1), 1523663.
Sonoda, Y., Ikeda, A., Saiki, S., Wirén, N. V., Yamaya, T., & Yamaguchi, J. (2003). Distinct expression and function of three ammonium transporter genes (OsAMT1; 1–1; 3) in rice. Plant and Cell Physiology, 44(7), 726-734.
Sun, L., Zhu, R., Xie, Z., & Xing, G. (2002). Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmospheric Environment, 36(31), 4977-4982.
Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análises de solo, plantas e outros materiais (Vol. 5, p. 174). Porto Alegre: Ufrgs.
Theobald, M. R., Crittenden, P. D., Tang, Y. S., & Sutton, M. A. (2013). The application of inverse-dispersion and gradient methods to estimate ammonia emissions from a penguin colony. Atmospheric Environment, 81, 320-329.
Tojo, M., Van West, P., Hoshino, T., Kida, K., Fujii, H., Hakoda, A., ... & Kanda, H. (2012). Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal biology, 116(7), 756-768.
Victoria, F. D. C., de Albuquerque, M. P., Pereira, A. B., Simas, F. N., Spielmann, A. A., & Schaefer, C. E. (2013). Characterization and mapping of plant communities at Hennequin Point, King George Island, Antarctica. Polar Research, 32(1), 19261.
Wilson, L. J., Bacon, P. J., Bull, J., Dragosits, U., Blackall, T. D., Dunn, T. E., ... & Wanless, S. (2004). Modelling the spatial distribution of ammonia emissions from seabirds in the UK. Environmental Pollution, 131(2), 173-185.
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., ... & Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 12(12), 2473-2483.
Zhang, Z. H., Wang, K., Guo, L., Zhu, Y. J., Fan, Y. Y., Cheng, S. H., & Zhuang, J. Y. (2012). Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice. PloS one, 7(12), e52538.
Zhang, J., Zhou, X., Yan, W., Zhang, Z., Lu, L., Han, Z., ... & Xing, Y. (2015). Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytologist, 208(4), 1056-1066.
Zhu, R., Sun, J., Liu, Y., Gong, Z., & Sun, L. (2011). Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing-thawing cycles and selected environmental variables. Antarctic Science, 23(1), 78-92.
Zwolicki, A., Barcikowski, M., Barcikowski, A., Cymerski, M., Stempniewicz, L., & Convey, P. (2015). Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic. Polar Biology, 38(10), 1645-1655.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Clarissa Kappel Pereira; Mônica Munaretto Minozzo; Gustavo Francisco Aver; Antonio Batista Pereira; Bruna Lucia Laindorf; Lurdes Zanchetta da Rosa; Maria Virginia Petry
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.