Comparison of data collected with a commercial thermo-hygrometer and with a DHT-11 sensor associated with an Arduino board and its potential for use in scientific research and teaching

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27329

Keywords:

Open source; Bland-Altman test; Hardware; Prototype.

Abstract

Prototyping platforms allow the researcher to personalize the data collection and its presentation, minimize costs in the purchase of equipment and provide greater integration of knowledge, when used for educational purposes. Given these advantages, in this article we present the data of air temperature and humidity obtained by two different equipment, one commercial and the other built under a free hardware platform, and we discuss the use of similar platforms in research and teaching. When making comparisons between the two mentioned equipment, the statistical tests did not show significant differences between the collected environmental data. In this way, we can employ such platforms without fear. Implementing technologies in science education creates more motivating environments, more attentive and committed students in the development of their work and, therefore, a better performance in evaluations. For when creating and interacting with software or hardware, the student experiences the "experiential continuum", in which he makes decisions about the best way to solve problems. It is in this context that computers, microcontrollers like the one used by Arduino, programming languages and computational thinking are tools to support research and science teaching. However, its use must be made consciously and guided by the teacher, who often does not have adequate training.

References

Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. Journal of the Royal Statistical Society: Series D (The Statistician), 32(3), 307-317.

Carvalho, L. J., & Guimarães, C. R. P. (2016). Tecnologia: um recurso facilitador do ensino de Ciências e Biologia. Encontro Internacional de Formação de Professores e Fórum Permanente de Inovação Educacional, 9(9), 1-12.

Chassot, A. I. (2018). Alfabetização científica: questões e desafios para a educação. Ijuí, RS: Ed. Unijuí.

Cunha, K. C. B., & Da Rocha, R. V. (2016). Automação no processo de irrigação na agricultura familiar com plataforma Arduino. Revista Eletrônica Competências Digitais para Agricultura Familiar, 1(2), 62-74.

Dewey, J. (2015). Experience and education. In The educational forum (Vol. 50, No. 3, pp. 241-252). Taylor & Francis Group.

Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Thousand Oaks, California, EUA: Sage publications.

Giavarina, D. (2015). Understanding bland altman analysis. Biochemia medica, 25(2), 141-151.

Kolcenti, C.; Zarpelon, M. C.; Balestrin, Deisi. Desenvolvimento sustentável no uso das tecnologias para a juventude rural. In: Simpósio Internacional de Gestão de Projetos, 3., 2014, São Paulo. Anais do III SINGEP e II S2IS. São Paulo, SP: UFF, 2014. p. 1 - 9. Retrieved from: http://www.singep.org.br/3singep/resultado/390.pdf.

Lindenmayer, D. B., & Likens, G. E. (2010). The science and application of ecological monitoring. Biological conservation, 143(6), 1317-1328.

Lindenmayer, D. B., Likens, G. E., Andersen, A., Bowman, D., Bull, C. M., Burns, E., ... & Wardle, G. M. (2012). Value of long‐term ecological studies. Austral Ecology, 37(7), 745-757.

Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., ... & Haeuber, R. (2007). Who needs environmental monitoring?. Frontiers in Ecology and the Environment, 5(5), 253-260.

Martinho, T., & Pombo, L. (2009). Potencialidades das TIC no ensino das Ciências Naturais–um estudo de caso. Revista Electrónica de Enseñanza de las Ciencias, 8(2), 527-538.

Morin, E. (2007). Educação e complexidade: os sete saberes e outros ensaios. São Paulo: Cortez.

Nascimento, J., Barbot, A., Maia-Lima, C., Pinto, A., & Couto, Â. (2017). Utilização da plataforma Arduino no desenvolvimento de duas Unidades Didáticas em Ciências Naturais. Enseñanza de las ciencias, (Extra), 0995-1002.

Papert, S. (2007). A máquina das crianças. Porto Alegre: Artmed, 17.

Ramos, M., & Coppola, N. C. (2009). O uso do computador e da internet como ferramentas pedagógicas. Dia a Dia Educação, 2551-2558

Ribeiro, J. D. (2017). Explorando as possibilidades de inserção da plataforma arduíno no ensino de ciências da educação básica. 168 p. 2017. Dissertação (Mestrado Profissional em Ensino de Ciências) – Universidade Federal do Pampa, Campus Bagé, Bagé.

Ribeiro, L. G., & Cardoso, L. D. O. (2009). Estudos de validação: qual análise utilizar?. Revista Brasileira de Medicina do Esporte, 15, 316-317.

Ruppenthal, R., dos Santos, T. L., & Prati, T. V. (2011). A utilização de mídias e TICs nas aulas de Biologia: como explorá-las. Cadernos do Aplicação, 24(2).

Sudério, F. B., Nascimento, M., Santos, C., & Cardoso, N. (2014). Tecnologias na educação: análise do uso e concepções no ensino de biologia e na formação docente. Revista SBEnbio, 7(1).

Team, R. C. (2020). R: A language and environment for statistical computing. Retrieved from: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing.

Published

19/03/2022

How to Cite

MARIANO, E. de F. Comparison of data collected with a commercial thermo-hygrometer and with a DHT-11 sensor associated with an Arduino board and its potential for use in scientific research and teaching . Research, Society and Development, [S. l.], v. 11, n. 4, p. e30611427329, 2022. DOI: 10.33448/rsd-v11i4.27329. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27329. Acesso em: 15 jan. 2025.

Issue

Section

Education Sciences