Seismic performance assessment of high-rise steel moment frame building with Reinforced Concrete (RC) core wall based on nonlinear time history analysis
DOI:
https://doi.org/10.33448/rsd-v11i4.27464Keywords:
High-rise building; RC shear core; Nonlinear finite element model; Time history analysis; Seismic performance.Abstract
This paper focuses on seismic responses of a 30-story high-rise building with a dual lateral system of Reinforced Concrete (RC) core shear wall and steel moment frame. To assess the seismic performance of the building, a nonlinear finite element model is built by using the OpenSees software. This three-dimensional model is created by using the fiber-beams for members and multi-layer shell elements for RC core walls. The numerical simulation has been examined under the thirteen sets of strong ground motion records which are scaled with the design and maximum seismic levels, Design-Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) level hazards respectively. In consequence, the desirable performance of high-rise steel moment frame building with RC shear core consisting of coupling beams and rectangular shear walls is shown. The outcome of nonlinear time history analyses reports the acceptable seismic performance of tall buildings designed. Results showed that maximum inter-story drift is significantly lower than allowable drift. Also, the RC core wall absorbed almost two-third of the total shear forces from the base level to one-third of height. However, the shear values of the core wall were significantly reduced by increasing the height while the shear values of the steel moment frame stayed constant.
References
Abraik, E., El-Fitiany, S. F., & Youssef, M. A. (2020). Seismic performance of concrete core walls reinforced with shape memory alloy bars. Structures, 27(April), 1479–1489. https://doi.org/10.1016/j.istruc.2020.07.053
Abraik, E., & Youssef, M. A. (2018). Seismic fragility assessment of superelastic shape memory alloy reinforced concrete shear walls. Journal of Building Engineering, 19(May), 142–153. https://doi.org/10.1016/j.jobe.2018.05.009
Arabzadeh, H., & Galal, K. (2017). Seismic Collapse Risk Assessment and FRP Retrofitting of RC Coupled C-Shaped Core Walls Using the FEMA P695 Methodology. Journal of Structural Engineering, 143(9), 04017096. https://doi.org/10.1061/(asce)st.1943-541x.0001820
Arabzadeh, H., & Galal, K. (2018). Seismic-Response Analysis of RC C-Shaped Core Walls Subjected to Combined Flexure, Shear, and Torsion. Journal of Structural Engineering, 144(10), 04018165. https://doi.org/10.1061/(asce)st.1943-541x.0002181
ASCE/SEI 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 4). American Society of Civil Engineers. https://doi.org/10.1061/9780784414859
ASCE. (2014). Seismic evaluation and retrofit of existing buildings.
ASCE7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. (2016). ASCE7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
ATC. (2009). Quantification of building seismic performance factors. Fema P695, June, 421.
Azam, S. K. M., & Hosur, V. (2013). Seismic Performance Evaluation of Multistoried RC framed buildings with Shear wall. International Journal of Scientific & Engineering Research, 4(1), 1.
Constantin, R. (2016). Seismic behaviour and analysis of U-shaped RC walls. 7133.
El-Tawil, S., Fortney, P., Harries, K., Shahrooz, B., Kurama, Y., Hassan, M., & Tong, X. (2009). Recommendations for seismic design of hybrid coupled wall systems. In Recommendations for Seismic Design of Hybrid Coupled Wall Systems. https://doi.org/10.1061/9780784410608
Harries, K. A. (2001). Ductility and deformability of coupling beams in reinforced concrete coupled walls. In Earthquake Spectra (Vol. 17, Issue 3, pp. 457–478). https://doi.org/10.1193/1.1586184
Huret, R. (2017). 5. Federal Emergency Management Agency. Katrina, 2005, November, 163–189. https://doi.org/10.4000/books.editionsehess.939
Khalid Mosalam, Amarnath Kasalanati, Grace Kang, C. B.-A. (2011). Pacific Earthquake Engineering Research Center.
Lu, X., Tian, Y., Cen, S., Guan, H., Xie, L., & Wang, L. (2018). A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees. Journal of Earthquake Engineering, 22(9), 1662–1682.
Lu, X., Xie, L., Guan, H., Huang, Y., & Lu, X. (2015). A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design, 98, 14–25. https://doi.org/10.1016/j.finel.2015.01.006
McKenna, F. (2011). OpenSees: a framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4), 58–66.
Moehle, J., Bozorgnia, Y., Jayaram, N., Jones, P., Rahnama, M., & Shome, N. (2011). Case Studies of the Seismic Performance of Tall Buildings Designed by Alternative Means – Task 12 Report for the Tall Buildings Initiative: Final Report to California Seismic Safety Commission and California Emergency Management Agency. Pacific Earthquake Engineering Research Center, July.
Ren, P., Li, Y., Guan, H., & Lu, X. (2015). Progressive Collapse Resistance of Two Typical High-Rise RC Frame Shear Wall Structures. Journal of Performance of Constructed Facilities, 29(3), 04014087. https://doi.org/10.1061/(asce)cf.1943-5509.0000593
Saleemuddin, M., Mohd, Z., & Sangle, K. K. (2017). Seismic damage assessment of reinforced concrete structure using non-linear static analyses. KSCE Journal of Civil Engineering, 21(4), 1319–1330.
Wu, Y., Wang, B., Yang, Y., & Fu, J. (2019). Nonlinear Optimization for Geometric Parameters of Reinforced Concrete Coupled Structural Walls. KSCE Journal of Civil Engineering, 23(10), 4339–4353. https://doi.org/10.1007/s12205-019-1189-5
Zaker Esteghamati, M., Banazadeh, M., & Huang, Q. (2018). The effect of design drift limit on the seismic performance of RC dual high‐rise buildings. The Structural Design of Tall and Special Buildings, 27(8), e1464.
Zhang, P., Restrepo, J. I., Conte, J. P., & Ou, J. (2017). Nonlinear finite element modeling and response analysis of the collapsed Alto Rio building in the 2010 Chile Maule earthquake. Structural Design of Tall and Special Buildings, 26(16). https://doi.org/10.1002/tal.1364
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maryam Azodi; Mehdi Banazadeh; Amir Mahmoudi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.