Data analyses of fatigue tests by extensometry in hip prosthesis of the Co-28Cr-6Mo alloy

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27854

Keywords:

Hip Prosthesis; ASTM F75; Fatigue Tests; Extensometry; ABNT NBR 7206-6: 2013 standard.

Abstract

ANVISA made changes to its regulations, setting new values for the fatigue tests, increasing the number of cycles that prostheses must endure without presenting failures. The standard used is ABNT NBR 7206-6:2013, in which all prostheses being commercialized must be tested in the new parameters. In this article, studies were conducted based on the requirement to revalidate the Co-26Cr-6Mo metallic alloy (ASTM F75). Microstructural characterizations (Optical and Scanning Electron Microscopies), and fatigue tests were carried out, with the aim of obtaining the mechanical behavior and features of the materials used in hip prostheses and comparing them with the standard. The grain size and inclusion contents were found to be controlled. Likewise, the prosthesis has withstand 10,000,000 cycles, and has not shown cracks, nor plastic deformations, enabling the biomedical use of this alloy according to the new regulations. Tensile test and liquid penetrant inspection were also carried out to take the parameters of the related physical properties. In the analysis with strain gauges, it was possible to detect the purely elastic deformation that occurred with the application of the load during fatigue tests, resulting in a slight variation of stress in the data acquisition system.

References

Ateshian, G. A. (1994). A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. Journal of Biomechanics, 27(1), 111–124. https://doi.org/10.1016/0021-9290(94)90038-8

Bezerra, E. (2017). Avaliação de não conformidades de próteses de quadril fabricadas com ligas de titânio e aço inox. Matéria (Rio de Janeiro), 22(1). https://doi.org/10.1590/s1517-707620170001.0114

Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science & Engineering. R, Reports: A Review Journal, 87, 1–57. https://doi.org/10.1016/j.mser.2014.10.001

Costa, L. dos S. (2021). Hip arthroplasty: Effective rehabilitation protocols. Research, Society and Development, 10(4), e45510414370. https://doi.org/10.33448/rsd-v10i4.14370

Dias, D. F., & Gonçalves, S. J. da C. (2021). Falhas em implantes de quadril. Research, Society and Development, 10(11), e357101119668. https://doi.org/10.33448/rsd-v10i11.19668

Geetha, M. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

Guarniero, R. (2010). Displasia do desenvolvimento do quadril: atualização. Revista Brasileira de Ortopedia, 45(2), 116–121. https://doi.org/10.1590/s0102-36162010000200002

Guesser, W. L. (2009). Propriedades mecânicas dos ferro fundidos, Issuu. https://issuu.com/editorablucher/docs/issuu_ferros_fundidos_isbn9788521205012.

Hanawa, T. (2002). Evaluation techniques of metallic biomaterials in vitro. Science and Technology of Advanced Materials, 3(4), 289–295. https://doi.org/10.1016/s1468-6996(02)00028-1

Hanawa, T. (2004). Metal ion release from metal implants. Materials Science & Engineering. C, Materials for Biological Applications, 24(6–8), 745–752. https://doi.org/10.1016/j.msec.2004.08.018

Hodge, W. A. (1986). Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences of the United States of America, 83(9), 2879–2883. https://doi.org/10.1073/pnas.83.9.2879

Manivasagam, G. (2010). Biomedical Implants: Corrosion and its Prevention - A Review. Corrosion Science, 2, 40–54.

Matos, D. B. (2020). Instrumentação de um sistema de sensoriamento: montagem de uma plataforma protótipo para a aquisição do empuxo de propulsores eletromecânicos / instrumentation of a sensing system: assembly of a prototype platform for the purchase of electromechanical propellers. Brazilian Journal of Development, 6(10), 78039–78050. https://doi.org/10.34117/bjdv6n10-290

McKee, G. K., & Watson-Farrar, J. (1966). Replacement of arthritic hips by the McKee-Farrar prosthesis. The Journal of Bone and Joint Surgery. British Volume, 48(2), 245–259. https://pubmed.ncbi.nlm.nih.gov/5937593/

Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 29(6), 992–1000. https://doi.org/10.1016/j.ijfatigue.2006.09.021

Niinomi, M. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

Paul, J. P. (1976). Force actions transmitted by joints in the human body. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. Royal Society (Great Britain), 192(1107), 163–172. https://doi.org/10.1098/rspb.1976.0004

Savilahti, S. (1997). Survival of Lubinus straight (IP) and curved (SP) total hip prostheses in 543 patients after 4-13 years. Archives of Orthopaedic and Trauma Surgery, 116(1–2), 10–13. https://doi.org/10.1007/bf00434092

Silva, C. G. I. da, & Gemelli, E. (2020). Influência da corrosão e de tensões cíclicas alternadas na vida em fadiga dos ferros fundidos nodulares das classes FE 50010 e FE 50007. Matéria (Rio de Janeiro), 25(2). https://doi.org/10.1590/s1517-707620200002.1024

Silva Junior, W. C. (2021). Obtaining the predicted number of cycles of femoral prosthesis manufactured with ASTM F138 and ASTM F75 aloys, applying the method of finite element. Journal of Physics. Conference Series, 1730(1), 012026. https://doi.org/10.1088/1742-6596/1730/1/012026

Souza, C. M. P., & Silva Junior, W. C. (2019). Comparação de desempenho da prótese de quadril fabricas nos materiais ASTM F75, F136 e F138. https://doi.org/10.5281/ZENODO.3460918

Downloads

Published

25/03/2022

How to Cite

SOUZA, C. M. P. de; SANTOS , R. G. .; SOUZA, R. C. .; MILITÃO , V. A. .; SILVA, I. G. .; SERIACOPI, V. .; SILVA JUNIOR, W. C. da . Data analyses of fatigue tests by extensometry in hip prosthesis of the Co-28Cr-6Mo alloy . Research, Society and Development, [S. l.], v. 11, n. 4, p. e52011427854, 2022. DOI: 10.33448/rsd-v11i4.27854. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27854. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings