Moisture sorption isotherms and thermodynamic properties of passion fruit seeds

Authors

DOI:

https://doi.org/10.33448/rsd-v9i5.2884

Keywords:

Hygroscopic equilibrium; Passiflora; Integral isosteric heat; Differential entropy; Gibbs free energy.

Abstract

The objective of this work was to determine the adsorption isotherms of sweet passion-fruit seeds, select the mathematical model that best describes the hygroscopic behavior of these seeds and estimate the integral isosteric heat, the differential entropy and Gibbs free energy to the conditions studied. The equilibrium moisture content of the seeds was obtained by the static-gravimetric method. To condition the equilibrium environment, the seeds were placed in sealed containers containing different saturated saline solutions and placed in chambers type B.O.D. regulated at temperatures of 10, 20, 30 and 40 ºC. Analyzing the results obtained conclude that: The equilibrium moisture content of passion-fruit seeds is directly proportional to water activity and decreases as the temperature increases; Among the models tested, the Chung Pfost model is the one that best represents the hygroscopicity of sweet passion-fruit seeds; With the reduction of the moisture content of the seeds, the integral isosteric heat of adsorption, the differential entropy and the Gibbs free energy increase; The adsorption process of sweet passion-fruit seeds is controlled by enthalpy.

References

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. (2009). Regras para análise de sementes.

Beristain, C. I., Garcia, H. S., & Azuara, E. (1996). Enthalpy-entropy compensation in food vapor adsorption. Journal of Food Engineering, 30(3-4), 405-415.

Carlesso, V. D. O., Berbert, P. A., Silva, R. F. D., & Detmann, E. (2008). Secagem e armazenamento de sementes de maracujá amarelo (Passiflora edulis Sims f. flavicarpa Degener). Revista Brasileira de Sementes, 30(2), 65-74.

Corrêa, P. C., de Oliveira, G. H. H., & de Souza Santos, E. (2012). Thermodynamic properties of agricultural products processes. In Physical Properties of Foods (pp. 144-155). CRC Press.

Corrêa, P. C., Reis, M. F. T., Oliveira, G. H. H. D., Oliveira, A. P. L. R. D., & Botelho, F. M. (2015). Moisture desorption isotherms of cucumber seeds: Modeling and thermodynamic properties. Journal of Seed Science, 37(1), 2018-225.

Cunha, M.A.P. da; Barbosa, L.V.; Junqueira, N.T.V. Aspectos Botânicos. In: LIMA, A. de A. Maracujá produção: aspectos técnicos. Embrapa mandioca e Fruticultura Cruz das Almas. Brasília: Embrapa Informação tecnológica, 2002. p.15-24.

Faleiro, F.G.; Junqueira, N.T.V.; Braga, M.F.; Oliveira, E.J. de.; Peixoto, J. R.; Costa, A.M. Germoplasma e melhoramento genético do maracujá – histórico e perspectivas. Documentos. Planaltina: Embrapa Cerrados, 2011. 36p.

Goneli, A. L., Correa, P. C., Oliveira, G. D., & Botelho, F. M. (2010). Water desorption and thermodynamic properties of okra seeds. Transactions of the ASABE, 53(1), 191-197.

Goneli, A. L., Corrêa, P. C., de Oliveira, G. H., Resende, O., & Mauad, M. (2016). Moisture sorption isotherms of castor beans. Part 1: Mathematical modeling and hysteresis. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 751-756.

Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.

Iglesias, H. A., & Chirife, J. (1976). Prediction of the effect of temperature on water sorption isotherms of food material. International Journal of Food Science & Technology, 11(2), 109-116.

Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. The Journal of Physical Chemistry, 80(21), 2335-2341.

Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. Water activity in foods: fundamentals and applications, 1, 109-154.

McMinn, W. A. M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2005). Enthalpy–entropy compensation in sorption phenomena of starch materials. Food Research International, 38(5), 505-510.

Meletti, L. M. M., & Maia, M. L. (1999). Maracujá: produção e comercialização. Campinas: Instituto Agronômico.

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of food engineering, 66(4), 513-518.

Nkolo Meze'e, Y. N., Noah Ngamveng, J., & Bardet, S. (2008). Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: the case of bubinga (Guibourtia Tessmanii J. Léonard; G. Pellegriniana JL). Thermochimica Acta, 468(1), 1-5.

Oliveira, G. H. H. de, Corrêa, P. C., Araujo, E. F., Valente, D. S. M., & Botelho, F. M. (2010). Desorption isotherms and thermodynamic properties of sweet corn cultivars (Zea mays L.). International Journal of Food Science & Technology, 45(3), 546-554.

Oliveira, D. E. C. de, Resende, O., de Souza Smaniotto, T. A., de Sousa, K. A., & Campos, R. C. (2013). Propriedades termodinâmicas de grãos de milho para diferentes teores de água de equilíbrio. Pesquisa Agropecuária Tropical, 43(1), 50-56.

Oliveira, D. E. C. de, Resende, O., Chaves, T. H., Souza, K. A., & de Souza Smaniotto, T. A. (2014). Propriedades termodinâmicas das sementes de pinhão-manso. Bioscience Journal, 30(3).

Oliveira, D. E. C. de, Resende, O., Costa, L. M., Júnior, F., Weder, N., & Igor, O. F. (2017). Hygroscopicity of baru (Dipteryx alata Vogel) fruit. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 279-284.

Rizvi, S. S. H. (1995). Thermodynamic properties of foods in dehydration. In Engineering properties of foods (pp. 261-348). CRC Press.

Sauer, D.B. Storage of Cereal Grains and Their Products. Fourth Edition, Ed. American Association of Cerial, Inc. 1992, p.615. 1995.

Silva, H. W. D., Costa, L. M., Resende, O., de Oliveira, D. E., Soares, R. S., & Vale, L. S. (2015). Higroscopicidade das sementes de pimenta (Capsicum chinense L.). Revista Brasileira de Engenharia Agrícola e Ambiental, 19(8), 780-784.

Sousa, K. A. D., Resende, O., Goneli, A. L. D., Smaniotto, T. A. D. S., & Oliveira, D. E. C. D. (2015). Thermodynamic properties of water desorption of forage turnip seeds. Acta Scientiarum. Agronomy, 37(1), 11-19.

Telis, V. R. N., Gabas, A. L., Menegalli, F. C., & Telis-Romero, J. (2000). Water sorption thermodynamic properties applied to persimmon skin and pulp. Thermochimica Acta, 343(1-2), 49-56.

Thys, R. C. S., Noreña, C. P. Z., Marczak, L. D. F., Aires, A. G., & Cladera-Olivera, F. (2010). Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering, 100(3), 468-473.

Ullmann, R., Resende, O., Oliveira, D. E., Costa, L. M., & Chaves, T. H. (2016). Higroscopicidade das sementes de sorgo-sacarino. Engenharia Agrícola, 36(3), 515-524.

Wang, N., & Brennan, J. G. (1991). Moisture sorption isotherm characteristics of potatoes at four temperatures. Journal of Food Engineering, 14(4), 269-287.

Published

28/03/2020

How to Cite

ISQUIERDO, E. P.; SIQUEIRA, V. C.; BORÉM, F. M.; ANDRADE, E. T. de; LUZ, P. B. da; QUEQUETO, W. D. Moisture sorption isotherms and thermodynamic properties of passion fruit seeds. Research, Society and Development, [S. l.], v. 9, n. 5, p. e44952884, 2020. DOI: 10.33448/rsd-v9i5.2884. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2884. Acesso em: 21 nov. 2024.

Issue

Section

Agrarian and Biological Sciences