Antioxidant and toxicological potential of the Golden trumpet hydroalcoholic stem bark extract

Authors

DOI:

https://doi.org/10.33448/rsd-v9i4.2936

Keywords:

Phytochemistry; Terpenes; Chromatography; Traditional medicine; Tabebuia.

Abstract

Handroanthus chrysotrichus is a tree of the Bignoniaceae family known as golden trumpet that is distributed throughout Northeast, Southeast and South Brazil. Its flowers, stem and bark are used for medicinal purposes in the treatment of cardiovascular and immune system diseases. This study aims to evaluate the phytochemical profile, biological activity spectrum, antioxidant capacity and toxicological potential of H. chrysotrichus stem bark extract. Hydroethanolic extract was obtained by percolation and lyophilized. Compounds present in the extract were analyzed by colorimetric methods and by GC-MS. Evaluation of the biological activity spectrum was performed in silico. Antioxidant power was determined by investigation of total antioxidant capacity, iron chelating capacity, DPPH and ABTS•+ assays, and deoxyribose degradation test. The ability to inhibit Fe+ induced lipoperoxidation was evaluated in mouse brains and livers. Nauplii of Artemia salina were used to evaluate the median lethal dose. Toxicity was assessed by computer simulation, and in vitro in human lymphocytes. As a result, colorimetric methods suggest high levels of polyphenols and GC-MS data indicated the occurrence of α-curcumene, β-bisabolene, 4- (4-methylphenyl) pentanal, pentanoic acid and isoamyl acetate. Computer simulations have pointed biological activities that are in accordance with their traditional use. The H. chrysotrichus stem bark extract exhibited antioxidant activity in several assays and was effective in protecting mouse brains and livers from Fe+ induced lipoperoxidation. H. chrysotrichus stem bark extract showed medium toxicity in A. salina with potential presence of bioactive compounds. In general, the compounds showed low probability of toxicity in silico predictions. There was no cytotoxicity and genotoxicity in human lymphocyte evaluation. The results indicate that H. chrysotrichus stem bark extract has compounds with biological activity spectrum and low toxicological potential. It also shows antioxidant capacity and protective action against lipid peroxidation. The data presented support the medicinal use of golden trumpet and point to it as a promising extract for in vivo evaluations.

References

AlShebly, M. M., AlQahtani, F. S., Govindarajan, M., Gopinath, K., Vijayan, P., & Benelli, G. (2017). Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and Japanese encephalitis mosquito vectors. Ecotoxicology and Environmental Safety, 137(2017), 149–157. https://doi.org/10.1016/j.ecoenv.2016.11.028

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292

Bieski, I. G. C., Leonti, M., Arnason, J. T., Ferrier, J., Rapinski, M., Violante, I. M. P., Balogun, S. O., Pereira, J. F. C. A., Figueiredo, R. D. C. F., Lopes, C. R. A. S., Silva, D. R. da, Pacini, A., Albuquerque, U. P., & Oliveira, D. T. (2015). Ethnobotanical study of medicinal plants by population of Valley of Juruena Region , Legal Amazon , Mato Grosso , Brazil. Journal of Ethnopharmacology, 173, 383–423. https://doi.org/10.1016/j.jep.2015.07.025

Bolson, M., Hefler, S. R., Dall’Oglio Chaves, E. I., Gasparotto Junior, A., & Cardozo Junior, E. L. (2015). Ethno-medicinal study of plants used for treatment of human ailments, with residents of the surrounding region of forest fragments of Paraná, Brazil. Journal of Ethnopharmacology, 161, 1–10. https://doi.org/10.1016/j.jep.2014.11.045

Boriollo, M. F. G., Silva, T. A., Rodrigues-Netto, M. F., Silva, J. J., Marques, M. B., Dias, C. T. S., Höfling, J. F., Resck, M. C. C., Oliveira, N. M. S., Boriollo, M. F. G., Silva, T. A., Rodrigues-Netto, M. F., Silva, J. J., Marques, M. B., Dias, C. T. S., Höfling, J. F., Resck, M. C. C., & Oliveira, N. M. S. (2017). Reduction of doxorubicin-induced genotoxicity by Handroanthus impetiginosus in mouse bone marrow revealed by micronucleus assay. Brazilian Journal of Biology, 78(1), 1–12. https://doi.org/10.1590/1519-6984.18515

Castellanos, J. R. G., Prieto, J. M., & Heinrich, M. (2009). Red Lapacho (Tabebuia impetiginosa) — A global ethnopharmacological commodity? Journal of Ethnopharmacology, 121, 1–13. https://doi.org/10.1016/j.jep.2008.10.004

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a

Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., Park, S. H., & Kim, S. K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163(6), 1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1

Costa, E. V. S., Brígido, H. P. C., Silva, J. V. da S. e, Coelho-Ferreira, M. R., Brandão, G. C., & Dolabela, M. F. (2017). Antileishmanial Activity of Handroanthus serratifolius (Vahl) S. Grose (Bignoniaceae). Evidence-Based Complementary and Alternative Medicine, 2017, 1–6. https://doi.org/10.1155/2017/8074275

Drwal, M. N., & Griffith, R. (2013). Combination of ligand- and structure-based methods in virtual screening. Drug Discovery Today. Technologies, 10(3), e395-401. https://doi.org/10.1016/j.ddtec.2013.02.002

Ferreira, D. T., Oliveira, A. B. de, & Castro, C. R. de. (1989). Constituintes químicos da Tabebuia impetiginosa (MART) Standl. Bignoniaceae. Semina: Exact and Technological Sciences, 10(4), 272–273.

Fraga, L. N., Oliveira, A. K. de S., Aragão, B. P., Silva, A. M. de O. e, Wartha, E. R. S. de A., Bacci, L., Lobato, L. P., & Carvalho, I. M. M. de. (2020). Physico-chemical characterization of the pulp and peel of Brazilian Pitomba (Talisia esculenta (A. St.-Hill.) Radlk). Research, Society and Development, 9(1), 1–14.

Garcez, F. R., Garcez, W. S., Mahmoud, T. S., Figueiredo, P. de O., & Resende, U. M. (2007). Novos constituintes químicos das cascas do caule de Tabebuia heptaphylla. Quimica Nova, 30(8), 1887–1891. https://doi.org/10.1590/S0100-40422007000800017

Grazziotin, J. D., Schapoval, E. E. S., Chaves, C. G., Gleye, J., & Henriques, A. T. (1992). Phytochemical and analgesic investigation of Tabebuia chrysotricha. Journal of Ethnopharmacology, 36(3), 249–251. https://doi.org/10.1016/0378-8741(92)90051-R

Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4a). Oxford University Press Inc.

Jardim Botânico do Rio de Janeiro. (2018). Flora do Brasil 2020 em construção. Handroanthus Chrysotrichus. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB114078

Jimenez-Gonzalez, F. J., Vélez-Gómez, J. M., Melchor-Moncada, J. J., Veloza, L. A., & Sepúlveda-Arias, J. C. (2018). Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacognosy Magazine, 14(55), 25–31.

Júnior, C. V. (2003). Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quimica Nova, 26(3), 390–400.

Kiage-mokua, B. N., Roos, N., & Schrezenmeir, J. (2012). Lapacho Tea (Tabebuia impetiginosa) Extract Inhibits Pancreatic Lipase and Delays Postprandial Triglyceride Increase in Rats †. Phytotherapy Research, 26, 1878–1883.

Kim, M.-G., Jeon, J. H., & Lee, H.-S. (2013). Larvicidal activity of the active constituent isolated from Tabebuia avellanedae bark and structurally related derivatives against three mosquito species. Journal of Agricultural and Food Chemistry, 61(45), 10741–10745. https://doi.org/10.1021/jf403679h

Lee, M. H., Choi, H. M., Hahm, D. H., Her, E., Yang, H. I., Yoo, M. C., & Kim, K. S. (2012). Analgesic and anti-inflammatory effects in animal models of an ethanolic extract of Taheebo, the inner bark of Tabebuia avellanedae. Molecular Medicine Reports, 6(4), 791–796. https://doi.org/10.3892/mmr.2012.989

Lima, A. R. N., Macedo, R. G., Batista, G. G., Câmara, G. B., Lima, R. de F., & Oliveira, T. K. B. de. (2020). Antimicrobial and anti-inflammatory activity of Anadenanthera colubrina (Vell.) Brenan. Research, Society and Development, 9(1), 1–12.

Liu, Y.-J. (2006). Thymic stromal lymphopoietin: master switch for allergic inflammation. The Journal of Experimental Medicine, 203(2), 269–273. https://doi.org/10.1084/jem.20051745

Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 613(1), 1–19. https://doi.org/10.1016/J.ACA.2008.02.047

McLaughlin, J. L. (1991). Crown gall tumors on potato discs and brine shrimp lethality: two simple bioassays for higher plant screening and fractions. In P.M.DEY & J. B. HARBONE (Eds.), Methods in Plant Biochemistry (1st ed., pp. 1–32). Academic Press.

Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45(05), 31–34. https://doi.org/10.1055/s-2007-971236

Mizuno, N., Abe, K., Morishita, Y., Yamashita, S., Segawa, R., Dong, J., Moriya, T., Hiratsuka, M., & Hirasawa, N. (2017). Pentanoic acid induces thymic stromal lymphopoietin production through G q/11 and Rho-associated protein kinase signaling pathway in keratinocytes. International Immunopharmacology, 50, 216–223. https://doi.org/10.1016/j.intimp.2017.06.024

Nurmi, K., Ossipov, V., Haukioja, E., & Pihlaja, K. (1996). Variation of total phenolic content and individual low-molecular-weight phenolics in foliage of mountain birch trees (Betula pubescens ssp.tortuosa). Journal of Chemical Ecology, 22(11), 2023–2040. https://doi.org/10.1007/BF02040093

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

OSIRIS Properties Explorer. (n.d.). Retrieved September 16, 2018, from https://www.organic-chemistry.org/prog/peo

Park, B.-S., Lee, K.-G., Shibamoto, T., Lee, S.-E., & Takeoka, G. R. (2003). Antioxidant Activity and Characterization of Volatile Constituents of Taheebo (Tabebuia impetiginosa Martius ex DC). Journal of Agricultural and Food Chemistry, 51, 295–300.

Park, B., Lee, H., Lee, S., Piao, X., Takeoka, G. R., Wong, R. Y., Ahn, Y., & Kim, J. (2006). Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. Journal of Ethnopharmacology, 105, 255–262. https://doi.org/10.1016/j.jep.2005.11.005

Perez, J. E., Isaza, G., Bueno, J. G., Arango, M. C., Hincapié, B. L., Nieto, A. M., & Londoño, D. P. (2004). Efecto de los extractos de Phenax rugosus, Tabebuia chrysantha, Althernantera williamsii y Solanum dolichosepalum sobre el leucograma y la producción de anticuerpos en ratas. REVISTA MÉDICA DE RISARALDA, 10(2), 13–21.

Pires, D. E. V, Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

PreADMET web-based, Online. (n.d.). Retrieved September 16, 2018, from https://preadmet.bmdrc.kr/

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of Vitamin E. Anal Biochem, 269, 337–341.

Puntel, R. L., Nogueira, C. W., & Rocha, J. B. T. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochemical Research, 30(2), 225–235. https://doi.org/10.1007/s11064-004-2445-7

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Reis, F. P., Senna Bonfa, I. M., Cavalcante, R. B., Okoba, D., De Souza Vasconcelos, S. B., Candeloro, L., De Oliveira Filiu, W. F., Duenhas Monreal, A. C., Da Silva, V. J., Santa Rita, P. H., Carollo, C. A., & Toffoli-Kadri, M. C. (2014). Tabebuia aurea decreases inflammatory, myotoxic and hemorrhagic activities induced by the venom of Bothrops neuwiedi. Journal of Ethnopharmacology, 158(PART A), 352–357. https://doi.org/10.1016/j.jep.2014.10.045

Ribeiro, R. V., Bieski, I. G. C., Balogun, S. O., & Martins, D. T. de O. (2017). Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of Ethnopharmacology, 205(April), 69–102. https://doi.org/10.1016/j.jep.2017.04.023

Salgueiro, A.C.F., Folmer, V., Bassante, F. E. M., Cardoso, M. H. S., da Rosa, H. S., & Puntel, G. O. (2018). Predictive antidiabetic activities of plants used by persons with Diabetes mellitus. Complementary Therapies in Medicine, 41, 1–9. https://doi.org/10.1016/j.ctim.2018.08.009

Salgueiro, A. C. F., Folmer, V., da Silva, M. P., Mendez, A. S. L., Zemolin, A. P. P., Posser, T., Franco, J. L., Puntel, R. L., Puntel, G. O., Puntel, R. L., Puntel, G. O. (2016). Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice. Oxidative Medicine and Cellular Longevity, 2016, 1–9. https://doi.org/10.1155/2016/8902954

Sharma, J. N., A Al-Omran, & Parvathy, S. S. (2007). Review Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15, 252–259. https://doi.org/10.1007/s10787-007-0013-x

Sims, J. E., Williams, D. E., Morrissey, P. J., Garka, K., Foxworthe, D., Price, V., Friend, S. L., Farr, A., Bedell, M. A., Jenkins, N. A., Copeland, N. G., Grabstein, K., & Paxton, R. J. (2000). Molecular cloning and biological characterization of a novel murine lymphoid growth factor. The Journal of Experimental Medicine, 192(5), 671–680. http://www.ncbi.nlm.nih.gov/pubmed/10974033

Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191. https://doi.org/10.1016/0014-4827(88)90265-0

Soares, J. J., Rodrigues, D. T., Gonçalves, M. B., Lemos, M. C., Gallarreta, M. S., Bianchini, M. C., Gayer, M. C., Puntel, R. L., Roehrs, R., & Denardin, E. L. G. (2017). Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomedicine and Pharmacotherapy, 95(July), 245–251. https://doi.org/10.1016/j.biopha.2017.08.073

Topping, D. L. (1996). Short-chain fatty acids produced by intestinal bacteria. Asia Pacific Journal of Clinical Nutrition, 5, 15–19.

Torres, S., Pandey, A., & Castro, G. R. (2010). Banana flavor: Insights into isoamyl acetate production. Cell, 549(1), 776–802.

Twardowschy, A., Freitas, C. S., Baggio, C. H., Mayer, B., dos Santos, A. C., Pizzolatti, M. G., Zacarias, A. A., dos Santos, E. P., Otuki, M. F., & Marques, M. C. A. (2008). Antiulcerogenic activity of bark extract of Tabebuia avellanedae, Lorentz ex Griseb. Journal of Ethnopharmacology, 118(3), 455–459. https://doi.org/10.1016/j.jep.2008.05.013

Tyagi, A. K., Prasad, S., Yuan, W., Li, S., & Aggarwal, B. B. (2015). Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: Comparison with curcumin. Investigational New Drugs, 33(6), 1175–1186. https://doi.org/10.1007/s10637-015-0296-5

Vertuani, S., Angusti, A., & Manfredini, S. (2004). The Antioxidants and Pro-Antioxidants Network: An Overview. Current Pharmaceutical Design, 10(14), 1677–1694. https://doi.org/10.2174/1381612043384655

Wright, C. R., & Setzer, W. N. (2013). Volatile components of organ pipe cactus , Stenocereus thurberi Engelm., growing in the Organ Pipe Cactus National Monument and the Arizona-Sonora Desert Museum. American Journal of Essential Oils and Natural Products, 1(3), 19–22. https://doi.org/10.1086/497361

Downloads

Published

20/03/2020

How to Cite

COSTA, M. T.; GOULART, A. da S.; SOARES, J. de J.; SALGUEIRO, A. C. F.; DA ROSA, H. S.; DENARDIN, E. L. G.; PAIM, C. S.; PUNTEL, R. L.; FOLMER, V. Antioxidant and toxicological potential of the Golden trumpet hydroalcoholic stem bark extract. Research, Society and Development, [S. l.], v. 9, n. 4, p. e122942936, 2020. DOI: 10.33448/rsd-v9i4.2936. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2936. Acesso em: 25 nov. 2024.

Issue

Section

Agrarian and Biological Sciences