Estimation of water consumption of eucalyptus using images from orbital sensors

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30362

Keywords:

Remote sensing; Metric; Google Earth Engine; GIS; Eeflux.

Abstract

The planting of Eucalyptus around the world has generated numerous discussions caused by the effects of its implementation and its environmental impacts caused in the ecosystem and water availability in the environment. Evapotranspiration (ET) is a primary parameter for most studies involving water resources, as it represents the main water loss in the hydrological cycle and presents a complex structure of interaction with the ecosystem, and is strongly influenced by the environment and human activity. Remote sensing aids in obtaining ET estimates over large areas and offers results with a high degree of confidence and speed. The objective of this work was to estimate the evapotranspiration of a reforested area (eucalyptus) and Brazilian savanna, in the city of São João do Paraiso/MG, using orbital images from the LANDSAT 8 satellite processed through the Mapping Evapotranspiration with Internalized Calibration (METRIC) algorithm in the Google Earth Engine platform, Earth Engine Evapotranspiration Flux EEFLUX. The data were processed and the average ET values for the areas were obtained. The eucalyptus plantation area (reforestation) obtained lower average evapotranspiration when compared to the and Brazilian savanna, area, however the unpaired Student's t-test was applied, and it was obtained that the averages are statistically equal in the evaluated period, it was observed higher ET values in the summer period being the variation of evapotranspiration related to the availability of radiation. The use of the METRIC algorithm, associated with the EEFLUX application, proved to be satisfactory for the study of evapotranspiration in watersheds, and may help to manage water resources more efficiently.

References

Alam, M. S., Lamb, D.W., & Rahman, M.M. (2018). A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Computers And Electronics In Agriculture. 147,12-17. http://dx.doi.org/10.1016/j.compag.2018.02.008

Allen, R. G et al. (2015). EEflux: A Landsat-based Evapotranspiration mapping tool on the Google Earth Engine. American Society of Agricultural and Biological Engineers. 1–11.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO. 300 p. (FAO – Irrigation and Drainage Paper, 56).?

Allen, R.; Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering. 133 (04), 380-394.

Allen, R.G. et al. (2007a) Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. Journal Of Irrigation And Drainage Engineering.133(4), 380-394. http://dx.doi.org/10.1061/(asce)0733-9437(2007)133:4(380).

Anderson, M. C. et al. (2004). A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales. Journal Of Hydrometeorology. 5(2), 343-363. http://dx.doi.org/10.1175/1525-7541(2004)0052.0.co;2.

Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M.(1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal Hydrology. 212(1), 198-212.

Bosquilia, R. W. D. (2016). Modelagem espacial da evapotranspiração utilizando Modelo de Duas Fontes em ambiente SIG para florestas e cana-de-açúcar. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba. doi:10.11606/T.11.2016.tde-03102016-165340. Recuperado em 2022-05-14, de www.teses.usp.br

Cândido, B. M., Silva, M. L. N., Curi, N., & Batista, P. V. G. (2014). Erosão hídrica pós-plantio em florestas de eucalipto na bacia do rio Paraná, no leste do Mato Grosso do Sul. Revista Brasileira de Ciência do Solo. 38(5), 1565-1575.

Conceição, M., A. (2013). Ajuste do modelo de hargreaves para estimativa da evapotranspiração de referência no noroeste paulista. Revista Brasileira de Agricultura Irrigada. 7, 306-316.

Costa, J.O. et al. (2020). Spatial variability quantification of maize water consumption based on Google EEflux tool. Agricultural Water Management, 232, 1-8,. http://dx.doi.org/10.1016/j.agwat.2020.106037

Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation And Drainage Systems. 19(3-4), 223-249. http://dx.doi.org/10.1007/s10795-005-5186-0.

Douna, V. et al. (2021). Towards a remote sensing data based evapotranspiration estimation in Northern Australia using a simple random forest approach. Journal Of Arid Environments. 191(11), 1-15, http://dx.doi.org/10.1016/j.jaridenv.2021.104513.

Drexler, J. Z. et al. (2004). A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes. 18(11), 2071-2101. http://dx.doi.org/10.1002/hyp.1462.

Garcia, L. G. et al. (2018). Hydrological effects of forest plantation clear-cut on water availability: consequences for downstream water users. Journal Of Hydrology: Regional Studies. 19, 17-24. http://dx.doi.org/10.1016/j.ejrh.2018.06.007.

IBÁ -Indústria Brasileira de Árvores. (2015). Relatório Anual Ibá 2015. 100.

IBGE- Instituto Brasileiro de Geografia e Estatísica. (2020). Produção da Extração Vegetal e da Silvicultura. Rio de Janeiro, 34, 1-8, ano base-2019.

Ishida, A. et al. (2006). Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand. Tree Physiology. 26(50), 643-656.

Leite, F. P. et al. (1999) Relações hídricas em povoamento de eucalipto com diferentes densidades populacionais. Revista Brasileira de Ciência do Solo. 23(1), 9-16.http://dx.doi.org/10.1590/s0100-06831999000100002.

LI, Zhao-Liang et al. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors, [S.L.], v. 9, n. 5, p. 3801-3853, 19 maio 2009. MDPI AG. http://dx.doi.org/10.3390/s90503801.

Lima, J. G. A., Sánchez, J. M., Piqueras, J. G., Espínola Sobrinho, J., Viana, P. C., & Alves, A. da. (2020). Evapotranspiration of sorghum from the energy balance by METRIC and STSEB. Revista Brasileira de Engenharia Agrícola E Ambiental, 24(1), 24–30. https://doi.org/10.1590/1807-1929/agriambi.v24n1p24-30

Madugundu, R., Al-Gaadi, K. A., Tola, E., Kayad, A. G., & Jha, C. S. (2017). Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi Journal of Biological Sciences, 24(2), 410–420. https://doi.org/10.1016/j.sjbs.2016.10.003

Martins, F. B., Gonzaga, G., Dos Santos, D. F., & Reboita, M. S. (2018). CLASSIFICAÇÃO CLIMÁTICA DE KÖPPEN E DE THORNTHWAITE PARA MINAS GERAIS: CENÁRIO ATUAL E PROJEÇÕES FUTURAS. Revista Brasileira de Climatologia, 1. https://doi.org/10.5380/abclima.v1i0.60896

Madugundu, R., Al-Gaadi, K. A., Tola, E., Kayad, A. G., & Jha, C. S. (2017). Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi Journal of Biological Sciences, 24(2), 410–420. https://doi.org/10.1016/j.sjbs.2016.10.003

Mendes, D., & Anderle, R. J. (2014). Análise da diversificação produtiva da silvicultura em propriedade rural. Repositorio.utfpr.edu.br. http://repositorio.utfpr.edu.br/jspui/handle/1/13504

Landsat 8 «Landsat Science. (2012). Retrieved from Nasa.gov website: https://landsat.gsfc.nasa.gov/landsat-8/

Nisa, Z., Khan, M. S., Govind, A., Marchetti, M., Lasserre, B., Magliulo, E., & Manco, A. (2021). Evaluation of SEBS, METRIC-EEFlux, and QWaterModel Actual Evapotranspiration for a Mediterranean Cropping System in Southern Italy. Agronomy, 11(2), 345. https://doi.org/10.3390/agronomy11020345

Pereira, A. R., Sediyama, G. C., & Villa Nova, N. A. (2013). Evapotranspiração. Campinas: Fundag.

Ramírez-Cuesta, J., Mirás-Avalos, J., Rubio-Asensio, J., & Intrigliolo, D. (2018). A Novel ArcGIS Toolbox for Estimating Crop Water Demands by Integrating the Dual Crop Coefficient Approach with Multi-Satellite Imagery. Water, 11(1), 38. https://doi.org/10.3390/w11010038

Rana, G., & Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy, 13(2-3), 125–153. https://doi.org/10.1016/s1161-0301(00)00070-8

Salemi, L. F., Groppo, J. D., Trevisan, R., de Moraes, J. M., de Barros Ferraz, S. F., Villani, J. P., … Martinelli, L. A. (2013). Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. Journal of Hydrology, 499, 100–109. https://doi.org/10.1016/j.jhydrol.2013.06.049

Santarosa, E.; Penteado Júnior, J. F.; Goulart, I. C. G 2014. Transferência de tecnologia florestal: cultivo de eucalipto em propriedades rurais: diversificação da produção e renda. Brasília: Embrapa, 138 p. ISBN 976-85-7035-400-6.

Sena, C. C. R. (2021). Uso do sensoriamento remoto para a estimativa da evapotranspiração atual e diagnóstico do manejo da irrigação da cultura do tomate industrial em Goiás. Repositorio.bc.ufg.br. Retrieved from http://repositorio.bc.ufg.br/tede/handle/tede/11361

Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), 4037–4049. https://doi.org/10.1002/hyp.8379

de Oliveira Ferreira Silva, C., Lilla Manzione, R., & Albuquerque Filho, J. (2018). Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae, 4(4), 44. https://doi.org/10.3390/horticulturae4040044

Silva, W. et al. “Índice de consumo e eficiência do uso da água em eucalipto, submetido a diferentes teores de água em convivência com braquiária”. Curitiba: Floresta (UFPR), v. 34, n. 3, p. 325-335, 2004.

Thorp, K. R., Marek, G. W., DeJonge, K. C., Evett, S. R., & Lascano, R. J. (2019). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, 119, 214–227. https://doi.org/10.1016/j.envsoft.2019.06.007

Xue, J., Bali, K. M., Light, S., Hessels, T., & Kisekka, I. (2020). Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agricultural Water Management, 238, 106228. https://doi.org/10.1016/j.agwat.2020.106228

Published

01/06/2022

How to Cite

DIAS, T. L. .; VICENTE, M. R. .; SANTOS, R. M. dos .; LIMA, V. O. B. .; NUNES, S. M. V. . Estimation of water consumption of eucalyptus using images from orbital sensors. Research, Society and Development, [S. l.], v. 11, n. 7, p. e48011730362, 2022. DOI: 10.33448/rsd-v11i7.30362. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/30362. Acesso em: 7 jan. 2025.

Issue

Section

Agrarian and Biological Sciences