Use of grape seed extract and its implications in the skin aging process
DOI:
https://doi.org/10.33448/rsd-v11i9.31357Keywords:
Grape Seed Extract; Skin; Aging.Abstract
Skin aging is a complex process and not fully elucidated in the literature, although it is known that its changes are influenced by intrinsic and extrinsic factors, such as ultraviolet radiation (UV) and changes in the extracellular matrix. Given this context, therapeutic interventions based on grape seed extract arise, as it is an abundant source of polyphenols, alkaloids, steroids, cardiac glycosides, saponins and large amounts of Resveratrol. Thus, the present research sought to describe the benefits of using grape seed extract in the fight against aging. Where used as a methodology bibliographic research of the integrative review type in the databases of the Virtual Health Library, using the insertion of DeCS: Grape Seed Extract (Grape Seed Extract), Skin Aging/Skin Aging/ Envejecimiento de la Piel, combined with the Boolean operator AND to perform the searches. Articles that had full text available for reading and that had used formulations with grape seed extract in order to promote anti-aging effects on the skin were included. Duplicates and bibliographic searches are excluded. The results of this review found that the use of grape seed extracts used in research showed positive outcomes in terms of their anti-aging activity, as evidenced by reduced pH, wrinkles, dark circles, redness, and skin blemishes. Concluding that formulations that use grape seed extract benefit from its properties to promote a healthier microenvironment in the skin.
References
Bahramsoltani, R., Ebrahimi, F., Farzaei, M. H., Baratpourmoghaddam, A., Ahmadi, P., Rostamiasrabadi, P., Rasouli Amirabadi, A. H., & Rahimi, R. (2017). Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives. Critical Reviews in Food Science and Nutrition, 59(1), 114–132. https://doi.org/10.1080/10408398.2017.1360244
Bojanowski, K. (2013). Hypodermal delivery of cosmetic actives for improved facial skin morphology and functionality. International Journal of Cosmetic Science, 35(6), 562–567. https://doi.org/10.1111/ics.12077
Carneiro, J., & Junqueira, L. C. (2005). Basic histology: Text & atlas (basic histology). McGraw-Hill Medical.
Costa, A., Pegas Pereira, E. S., & Fávaro, R. (2011). Treating cutaneous photoaging in women with an oral supplement based on marine protein, concentrated acerola, grape seed extract and tomato extract, for 360 days. Surg Cosmet Dermatol 2011;3(4):302-11.
Costa, A., Lindmark, L., Arruda, L. H. F., Assumpção, E. C., Ota, F. S., Pereira, M. d. O., & Langen, S. S. B. (2012). Clinical, biometric and ultrasound assessment of the effects of daily use of a nutraceutical composed of lycopene, acerola extract, grape seed extract and Biomarine Complex in photoaged human skin. Anais Brasileiros de Dermatologia, 87(1), 52–61. https://doi.org/10.1590/s0365-05962012000100006
Costa, A., Pereira, E., Assumpcao, E., Santos, F., Ota, F., Pereira, M., Fidelis, M., Favaro, R., Langen, S., Arruda, L., & Abildgaard, E. (2015). Assessment of clinical effects and safety of an oral supplement based on marine protein, vitamin C, grape seed extract, zinc, and tomato extract in the improvement of visible signs of skin aging in men. Clinical, Cosmetic and Investigational Dermatology, 319. https://doi.org/10.2147/ccid.s79447
Decean, H. P., Brie, I. C., Tatomir, C. B., Perde-Schrepler, M., Fischer-Fodor, E., & Virag, P. (2018). Targeting MAPK (p38, ERK, JNK) and inflammatory CK (GDF-15, GM-CSF) in UVB-Activated Human Skin Cells with Vitis vinifera Seed Extract. Journal of Environmental Pathology, Toxicology and Oncology, 37(3), 261–272. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018027009
Dumoulin, M., Gaudout, D., & Lemaire, B. (2016). Clinical effects of an oral supplement rich in antioxidants on skin radiance in women. Clinical, Cosmetic and Investigational Dermatology, Volume 9, 315–324. https://doi.org/10.2147/ccid.s118920
Gu, Y., Han, J., Jiang, C., & Zhang, Y. (2020). Biomarkers, oxidative stress and autophagy in skin aging. Ageing Research Reviews, 59, 101036. https://doi.org/10.1016/j.arr.2020.101036
Guimarães, G. R., Almeida, P. P., de Oliveira Santos, L., Rodrigues, L. P., de Carvalho, J. L., & Boroni, M. (2021). Hallmarks of aging in macrophages: Consequences to skin inflammaging. Cells, 10(6), 1323. https://doi.org/10.3390/cells10061323
Gupta, M., Dey, S., Marbaniang, D., Pal, P., Ray, S., & Mazumder, B. (2019). Grape seed extract: having a potential health benefits. Journal of Food Science and Technology, 57(4), 1205–1215. https://doi.org/10.1007/s13197-019-04113-w
Huber, K. L., Fernández, J. R., Webb, C., Rouzard, K., Healy, J., Tamura, M., Stock, J. B., Stock, M., & Pérez, E. (2021). AGSE: A novel grape seed extract enriched for PP2A activating flavonoids that combats oxidative stress and promotes skin health. Molecules, 26(21), 6351. https://doi.org/10.3390/molecules26216351
Lacroix, S., Bouez, C., Vidal, S., Cenizo, V., Reymermier, C., Justin, V., Vičanová, J., & Damour, O. (2006). Supplementation with a complex of active nutrients improved dermal and epidermal characteristics in skin equivalents generated from fibroblasts from young or aged donors. Biogerontology, 8(2), 97–109. https://doi.org/10.1007/s10522-006-9037-7
Memar, M. Y., Adibkia, K., Farajnia, S., Kafil, H. S., Yekani, M., Alizadeh, N., & Ghotaslou, R. (2019). The grape seed extract: A natural antimicrobial agent against different pathogens. Reviews in Medical Microbiology, 30(3), 173-182.
Michailidis, D., Angelis, A., Nikolaou, P. E., Mitakou, S., & Skaltsounis, A. L. (2021). Exploitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum By-Product Seeds as Dermo-Cosmetic Agents. Molecules, 26(3), 731. https://doi.org/10.3390/molecules26030731
Motwani, M. S., Khan, K., Pai, A., & Joshi, R. (2020). Efficacy of a collagen hydrolysate and antioxidants‐containing nutraceutical on metrics of skin health in Indian women. Journal of Cosmetic Dermatology, 19(12), 3371–3382. https://doi.org/10.1111/jocd.13404
Murina, A. T., Kerisit, K. G., & Boh, E. E. (2012). Reviews-mechanisms of skin aging. Cosmetic dermatology, 25(9), 399.
Nguyen, A. V., & Soulika, A. M. (2019). The dynamics of the skin’s immune system. International Journal of Molecular Sciences, 20(8), 1811. https://doi.org/10.3390/ijms20081811
Rafique, M., Shah, S. N. H., Hussain, I., Javed, I., Nisar, N., & Riaz, R. (2021). Development of grape seed extract based formulations by using non-invasive biophysical technique and its impact on skin aging. Pakistan Journal of Pharmaceutical Sciences, 34.
Santos, D. P., Passos, Y. F. M., Silva, A. C. C. (2016). Vinhoterapia: Resveratrol e suas propriedades antioxidantes no rejuvenescimento. Revista estética com ciência, São Paulo(8), 65- 70.
Soleymani, S., Iranpanah, A., Najafi, F., Belwal, T., Ramola, S., Abbasabadi, Z., Momtaz, S., & Farzaei, M. H. (2019). Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Archives of Dermatological Research, 311(8), 577–588. https://doi.org/10.1007/s00403-019-01930-z
Souza, M. T. d., Silva, M. D. d., & Carvalho, R. d. (2010). Integrative review: What is it? How to do it? Einstein (São Paulo), 8(1), 102–106. https://doi.org/10.1590/s1679-45082010rw1134
Subedi, L., Lee, T. H., Wahedi, H. M., Baek, S.-H., & Kim, S. Y. (2017). Resveratrol-Enriched rice attenuates uvb-ros-induced skin aging via downregulation of inflammatory cascades. Oxidative Medicine and Cellular Longevity, 2017, 1–15. https://doi.org/10.1155/2017/8379539
Xie, Y., Zhu, G., Yi, J., Ji, Y., Xia, Y., Zheng, Y., & Ye, C. (2021). A new product of multi‐plant extracts improved skin photoaging: An oral intake in vivo study. Journal of Cosmetic Dermatology. https://doi.org/10.1111/jocd.14620
Yarovaya, L., Waranuch, N., Wisuitiprot, W., & Khunkitti, W. (2020). Effect of grape seed extract on skin fibroblasts exposed to UVA light and its photostability in sunscreen formulation. Journal of Cosmetic Dermatology. https://doi.org/10.1111/jocd.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Elisana de Lima Silva; Mayara Danúbia da Silva; Tibério Cesar Lima de Vasconcelos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.